• Title/Summary/Keyword: objective algorithm

Search Result 2,802, Processing Time 0.028 seconds

Multi-factor Evolution for Large-scale Multi-objective Cloud Task Scheduling

  • Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1100-1122
    • /
    • 2023
  • Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.

Relay Selection Scheme Based on Quantum Differential Evolution Algorithm in Relay Networks

  • Gao, Hongyuan;Zhang, Shibo;Du, Yanan;Wang, Yu;Diao, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3501-3523
    • /
    • 2017
  • It is a classical integer optimization difficulty to design an optimal selection scheme in cooperative relay networks considering co-channel interference (CCI). In this paper, we solve single-objective and multi-objective relay selection problem. For the single-objective relay selection problem, in order to attain optimal system performance of cooperative relay network, a novel quantum differential evolutionary algorithm (QDEA) is proposed to resolve the optimization difficulty of optimal relay selection, and the proposed optimal relay selection scheme is called as optimal relay selection based on quantum differential evolutionary algorithm (QDEA). The proposed QDEA combines the advantages of quantum computing theory and differential evolutionary algorithm (DEA) to improve exploring and exploiting potency of DEA. So QDEA has the capability to find the optimal relay selection scheme in cooperative relay networks. For the multi-objective relay selection problem, we propose a novel non-dominated sorting quantum differential evolutionary algorithm (NSQDEA) to solve the relay selection problem which considers two objectives. Simulation results indicate that the proposed relay selection scheme based on QDEA is superior to other intelligent relay selection schemes based on differential evolutionary algorithm, artificial bee colony optimization and quantum bee colony optimization in terms of convergence speed and accuracy for the single-objective relay selection problem. Meanwhile, the simulation results also show that the proposed relay selection scheme based on NSQDEA has a good performance on multi-objective relay selection.

Application of multi objective genetic algorithm in ship hull optimization

  • Guha, Amitava;Falzaranoa, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.91-107
    • /
    • 2015
  • Ship hull optimization is categorized as a bound, multi variable, multi objective problem with nonlinear constraints. In such analysis, where the objective function representing the performance of the ship generally requires computationally involved hydrodynamic interaction evaluation methods, the objective functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for objective function and constraint definition are discussed here.

Machine load prediction for selecting machines in machining (절삭가공에서의 기계선정을 위한 기계부하 예측)

  • Choi H.R.;Kim J.K.;Rho H.M.;Lee H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.997-1000
    • /
    • 2005
  • Dynamic job shop environment requires not only more flexible capabilities of a CAPP system but higher utility of the generated process plans. In order to meet the requirements, this paper develops an algorithm that can select machines for the machining operations to be performed by predicting the machine loads. The developed algorithm is based on the multiple objective genetic algorithm that gives rise to a set of optimal solutions (in general, known as Pareto-optimal solutions). The objective shows a combination of the minimization of part movement and the maximization of machine utility balance. The algorithm is characterized by a new and efficient method for nondominated sorting, which can speed up the running time, as well as a method of two stages for genetic operations, which can maintain a diverse set of solutions. The performance of the algorithm is evaluated by comparing with another multiple objective genetic algorithm, called NSGA-II.

  • PDF

A Multi-Resource Leveling Algorithm for Project Networks

  • Lee, Chung-Ung
    • Journal of the military operations research society of Korea
    • /
    • v.3 no.1
    • /
    • pp.123-136
    • /
    • 1977
  • This thesis presents a modification and extension to the Burgess and Killebrew heuristic resource leveling procedure for project networks. In contrast to previous algorithms appearing in the literature, the objective function of this algorithm. is the minimization of the sum of the squared errors in each time period (deviations around the mean usage) of all resources over the duration of the project. This objective function continues the search for an improved schedule beyond that of previous algorithms with their associated objective functions. One important feature is that the algorithm tends to reduce the number of periods that a resource is idle during its duration on the project.

  • PDF

Static Compliance Analysis & Multi-Objective Optimization of Machine Tool Structures Using Genetic Algorithm(I) (유전자 알고리듬을 이용한 공자기계구조물의 정강성 해석 및 다목적 함수 최적화(I))

  • 이영우;성활경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.443-448
    • /
    • 2000
  • In this paper, multiphase optimization of machine structure is presented. The goal of first step is to obtain (i) light weight, (ii) rigidity statically. In this step, multiple optimization problem with two objective functions is treated using Pareto Genetic Algorithm. Where two objective functions are weight of the structure, and static compliance. The method is applied to a new machine structure design.

  • PDF

A Look-ahead Heuristic Algorithm for Large-scale Part-Machine Grouping Problems (대단위 부품-기계 군집 문제를 위한 Look-ahead 휴리스틱 알고리듬)

  • Baek Jong-Kwan;Baek Jun-Geol;Kim Chang Ouk
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.3
    • /
    • pp.41-54
    • /
    • 2005
  • In this paper, we consider a multi-objective machine cell formation problem. This problem Is characterized as determining part route families and machine cells such that total sum of inter-ceil part movements and maximum machine workload imbalance are simultaneously minimized. Together with the objective function, alternative part routes and the machine sequences of part routes are considered In grouping Part route families. Due to the complexity of the problem, a two-phase heuristic algorithm is proposed. And we developed an n-stage look-ahead heuristic algorithm that generalizes the roll-out algorithm. Computational experiments were conducted to verify the performance of the algorithm.

A random forest-regression-based inverse-modeling evolutionary algorithm using uniform reference points

  • Gholamnezhad, Pezhman;Broumandnia, Ali;Seydi, Vahid
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.805-815
    • /
    • 2022
  • The model-based evolutionary algorithms are divided into three groups: estimation of distribution algorithms, inverse modeling, and surrogate modeling. Existing inverse modeling is mainly applied to solve multi-objective optimization problems and is not suitable for many-objective optimization problems. Some inversed-model techniques, such as the inversed-model of multi-objective evolutionary algorithm, constructed from the Pareto front (PF) to the Pareto solution on nondominated solutions using a random grouping method and Gaussian process, were introduced. However, some of the most efficient inverse models might be eliminated during this procedure. Also, there are challenges, such as the presence of many local PFs and developing poor solutions when the population has no evident regularity. This paper proposes inverse modeling using random forest regression and uniform reference points that map all nondominated solutions from the objective space to the decision space to solve many-objective optimization problems. The proposed algorithm is evaluated using the benchmark test suite for evolutionary algorithms. The results show an improvement in diversity and convergence performance (quality indicators).

An Interference Avoidance Method Using Two Dimensional Genetic Algorithm for Multicarrier Communication Systems

  • Huynh, Chuyen Khoa;Lee, Won Cheol
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.486-495
    • /
    • 2013
  • In this article, we suggest a two-dimensional genetic algorithm (GA) method that applies a cognitive radio (CR) decision engine which determines the optimal transmission parameters for multicarrier communication systems. Because a CR is capable of sensing the previous environmental communication information, CR decision engine plays the role of optimizing the individual transmission parameters. In order to obtain the allowable transmission power of multicarrier based CR system demands interference analysis a priori, for the sake of efficient optimization, a two-dimensionalGA structure is proposed in this paper which enhances the computational complexity. Combined with the fitness objective evaluation standard, we focus on two multi-objective optimization methods: The conventional GA applied with the multi-objective fitness approach and the non-dominated sorting GA with Pareto-optimal sorting fronts. After comparing the convergence performance of these algorithms, the transmission power of each subcarrier is proposed as non-interference emission with its optimal values in multicarrier based CR system.

A New Reliability-Based Optimal Design Algorithm of Electromagnetic Problems with Uncertain Variables: Multi-objective Approach

  • Ren, Ziyan;Peng, Baoyang;Liu, Yang;Zhao, Guoxin;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.704-710
    • /
    • 2018
  • For the optimal design of electromagnetic device involving uncertainties in design variables, this paper proposes a new reliability-based optimal design algorithm for multiple constraints problems. Through optimizing the nominal objective function and maximizing the minimum reliability, a set of global optimal reliable solutions representing different reliability levels are obtained by the multi-objective particle swarm optimization algorithm. Applying the sensitivity-assisted Monte Carlo simulation method, the numerical efficiency of optimization procedure is guaranteed. The proposed reliability-based algorithm supplying multi-reliable solutions is investigated through applications to analytic examples and the optimal design of two electromagnetic problems.