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Abstract 

 
Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud 
computing is critical for cloud providers. However, as the demand for cloud resources from 
user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal 
solution of large-scale cloud task scheduling problems. In this paper, we first construct a large-
scale multi-objective cloud task problem considering the time and cost functions. Second, a 
multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed 
to solve the established problem. This algorithm solves by decomposing the large-scale 
optimization problem into multiple optimization subproblems. This reduces the computational 
burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm 
with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge 
transfer. Finally, simulation experiments and comparisons are performed on a large-scale task 
scheduling test set on the CloudSim platform. Experimental results show that our algorithm 
can obtain the best scheduling solution while maintaining good results of the objective 
function compared with other optimization algorithms. 
 
 
Keywords: Cloud computing, evolutionary algorithm, large-scale, multi-factorial, multi-
objective, task scheduling. 
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1. Introduction 

Cloud service is an information processing method in which a cloud provider provides virtual 
computing resources for all users through a network platform system to achieve large-scale 
computing [1, 2]. Cloud services use technologies such as distributed computing and virtual 
resource management to centralize dispersed resources in the network (e.g., virtual machine 
computing resources, application runtime platforms, and software) to form a shared pool of 
resources and provide services and billing to users in a dynamic on-demand and measurable 
manner [3, 4]. With the fast development of science and technology, cloud computing has 
brought a revolution in information technology and other fields through its efficient and 
powerful architecture, and computing technology has been extensively applied for personal 
and business purposes. Cloud computing is known as the primary solution for complex 
computing and large-scale data operations. The technology brings extreme convenience to 
users and businesses with its advantages of hyperscale, virtualization, high reliability, 
versatility, high scalability, and pay-as-you-go. As the tasks handled in cloud computing 
environments have different processing characteristics and requirements, hybrid, public, and 
private cloud environments have been derived [5]. Fig. 1 depicts the classification of the cloud 
environment and the three typical service models: Saas (Software as a Service), Paas (Platform 
and Services), and Iaas (Infrastructure as a Service)[6]. 
 

Public CloudPublic Cloud Private CloudHybird Cloud

Application layer

Software as a Service (SaaS)
Platform layer

Platform as a Service (PaaS)
Basic equipment layer

Infrastructure as a Service (IaaS)  
 

Fig. 1. Types and classifications of cloud services. 
 

The cloud provider provides virtual machine resources on the cloud (VMs consist of 
hardware computing, such as CPU, RAM, and BandWidth) [7]. These VM resources perform 
scheduling tasks independently of each other, and the VM in different data centers will execute 
different operating systems as well as application software. At the same time, virtualization, 
as a resource management technology, breaks the indivisible barrier of physical structure, 
which allows a single computer to be virtualized as multiple logical computers, and the 
abstraction of physical computing resources to achieve simulation, isolation, and sharing of 
resources. Therefore, it allows multiple VMs to perform their respective tasks simultaneously 
and without interfering with each other when task scheduling virtual machine resources. 

The scheduling problem [8, 9] occurs in various areas of the real world [10, 11], so it has 
strong research value and practical significance [12, 13]. The fast growth of science and 
technology has made the size of the Internet grow with each passing day [14, 15], and the 
massive growth of scheduling tasks on the cloud has increased the load on cloud computing. 
The large-scale cloud task scheduling problem is a highly researched NP-hard problem 
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because of using its task complexity and heterogeneity of VM resources. Researchers have 
conducted extensive research on scheduling problems in cloud environments and have 
proposed scheduling algorithms that include a combination of mathematical optimization 
modeling and various heuristics [16, 17]. EA is a population-based metaheuristic method to 
simulate the iterative course of events of biological evolution. With self-organizing, self-
adaptive, and self-learning properties, EAs can handle NP-hard problems effectively without 
the limitation of solving them [18, 19]. Therefore, EAs and related algorithms have been 
extensively applied in path planning [20, 21], vehicle scheduling [22, 23], and cloud task 
resource scheduling [24, 25]. For instance, Geng et al. [26] proposed a multi-objective cloud 
task scheduling problem with optimization modeling. And in the paper proposes a model 
developed based on a multi-objective EA solution from a hybrid perspective. Xu et al. [27] 
proposed a high-dimensional multi-objective cloud environment problem for uncertainty and 
user satisfaction in the current cloud environment. And proposed an algorithm based on the 
normal distribution of angular penalty distance. However, as the number of tasks uploaded by 
users and the level of demand increases, the cloud needs to continue to grow in complexity 
and the number of VMs and the need for heterogeneity continues to increase. EAs often need 
to consume more computational resources as well as running time to get feasible scheduling 
solutions when solving the scheduling problem. Therefore, traditional EAs can become almost 
useless in solving the constructed model. To better describe the real-life large-scale cloud task 
scheduling problem, it is crucial to propose an effective scheduling approach to solve the 
problem. 

Multiple optimization problems [28] often occur simultaneously in real life, and there will 
be some correlation between these problems, making it possible to share knowledge between 
problems. Motivated by multi-task learning, an algorithm MFEA based on the MFO strategy 
is proposed in the field of evolutionary algorithms, which expands a new direction for 
population-based algorithms so that multiple populations can make full use of the parallel 
search information implied between populations for knowledge migration during the 
evolutionary process, thus achieving the goal of accelerating the parallel evolution of multiple 
populations and finally obtaining the optimal solution required for their respective 
optimization problems. 

In this paper, a large-scale multi-objective cloud task scheduling model is proposed. In this 
model, the appropriate VM resources are scheduled by considering the task requirements 
submitted by users, while also considering the two objectives of task execution time and cost. 
According to the characteristics of the constructed model, an MFO-based multi-objective 
optimization algorithm is proposed to accomplish cloud task scheduling. When the algorithm 
solves the large-scale cloud task scheduling problem, the solution includes all VM data in the 
cloud and the virtualization technology allows all VMs to perform tasks without interfering 
with each other. The main types of tasks we consider are independent tasks, each of which 
needs to be assigned under a suitable virtual machine. This indicates that a large-scale cloud 
task scheduling problem can be decomposed into multiple smaller-scale problems, and thus 
the introduction of MFO techniques allows the EA to solve the divided MFO problem form 
during the optimization process. The main contributions of the article are as follows: 

(1) This paper proposes a large-scale multi-objective cloud task scheduling model 
considering task execution time and execution cost, decomposes the model constructed 
above into multiple small-scale scheduling models by a decomposition strategy of 
dimensionality reduction of the decision space dimensions, and redescribes it in the 
form of an MFO problem; 
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(2) An NSGA-III algorithm based on MFO is proposed. The initial population generated 
by the algorithm is divided into multiple subpopulations, and crossover across 
subpopulations is performed during iterations to generate higher-quality individuals 
and improve the performance of the algorithm. The combination of the strategies 
provides the algorithm with the ability to solve the MFO problem. 

The other sections of this paper are organized as follows. Section II introduces the related 
work to EA-based cloud task scheduling methods and scheduling problems based on MFO 
techniques. Section III details the multi-objective cloud task scheduling problem proposed in 
this paper. Section IV describes the processing of the proposed method and the overall 
framework. Section V discusses the setup for the experimental part and the analysis of the 
results. Finally, in the conclusion, we have summarized this paper and look forward to future 
work. 

2. Related Work 
In this Section, we first present the related work to the cloud task scheduling problem. After 
that, we present the application of MFO based on EAs in realistic scenarios presented in 
section 2.2. 

2.1 The optimization problem for cloud task scheduling 
Scholars are currently concentrating on modeling the scheduling problem as a mathematical 
problem about multi-objective optimization [29]. This approach aims to describe cloud task 
scheduling as a mathematical function and to solve the constructed mathematical problem 
using the EA. Malti et al. [30] proposed a multi-objective task scheduling grey wolf 
optimization (MOTSGWO) algorithm to optimize important parameter settings such as energy 
consumption, migration duration, and utilization in cloud services for the linear relationship 
between applications and workloads in the cloud task scheduler. Experimental results display 
that the MOTSGWO is outperform other scheduling algorithms. Imene et al. [31] constructed 
a task scheduling problem in the cloud considering minimized running time (TE), cost (cout), 
and power consumption (CE), and used the NSGA-III to optimize the above-proposed problem. 
Peng et al. [32] considered that the traditional GA algorithm can suffer from the shortage of 
long execution time in solving task scheduling problems with task priorities, and proposed a 
parallel GA with MapReduce framework, which is optimized in two phases. The first phase 
combines the GA with heuristic strategies to allocate tasks, and the second phase combines 
the GA with the MapReduce framework to assign jobs. Experimental results indicate that the 
method can substantially minimize the total scheduling execution time of cloud tasks. 
Alghamdi, MI [33] considered that the dramatic increase in the number of tasks and resources 
in the cloud leads to the problem that current optimization algorithms have high time 
complexity when solving cloud scheduling problems. It proposes a binary particle swarm 
optimization (BPSO) algorithm based on artificial neural networks (ANNs). BPSO uses ANNs 
to determine the variance of virtual machine resources, allowing the algorithm to update 
particle positions in iterations based on the variance of resources. Zade, B, and Mansouri, N 
[34] proposed an approach for a highly efficient scheduling method using Fuzzy Improved 
Red Fox Optimization (FIRFO) algorithm and game theory (EGFIRFO). EGFIRFO is used to 
solve a cloud scheduling problem considering four objectives such as resource utilization, load 
balancing, manufacturing span, and execution time. Compared with other scheduling methods, 
EGFIRFO achieves the best experimental results. 

Li et al. [35] proposed an improved multi-objective cuckoo search (IMOCS) algorithm for 
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optimizing the application scheduling problem in mobile edge computing (MEC). Simulation 
experiments demonstrate that the IMOCS scheduling algorithm can provide the best 
scheduling solution for MEC. Xia et al. [19] presented a multi-objective genetic algorithm 
(MOGA) and used MOGA for a large-scale workflow scheduling problem. MOGA utilizes 
the longest common subsequence (LCS) approach to preserve gene bits in elite individuals. 
Malti et al. [30] proposed an optimization algorithm based on flower pollination behavior. And 
it is used as a multi-objective cloud service scheduling model considering minimizing time 
span, execution cost, and maximizing task mapping. To improve the algorithm's search 
capability, the algorithm uses non-dominated sorting and technique for order of preference by 
similarity to ideal solution (TOPSIS) techniques. It is experimentally demonstrated that the 
algorithm can efficiently optimize the problem and find the optimal scheduling solutions. Qin 
et al. [36] proposed a cluster-based cooperative co-evolutionary (CBCC) algorithm. CBCC 
was applied to a multi-objective workflow scheduling problem, including minimizing cost, 
time, and risk. Experimental results demonstrate that CBCC has good performance compared 
with other advanced algorithms. Emami, H [37] proposed an Enhanced Sunflower 
Optimization (ESFO) algorithm and achieved good performance on a cloud task scheduling 
model considering energy consumption and time span objectives. The performance of ESFO 
is improved by 0.73% and 2.24% respectively compared to other algorithms. 

2.2 The multi-factor optimization for the optimization problem 
In real life, optimization tasks do not exist independently of each other, there will be a degree 
of similarity and potential connection between these tasks [38]. To meet the need of optimizing 
multiple tasks simultaneously, Gupta et al. [39] first introduced the concept of evolutionary 
multitasking (EMT) and proposed a multi-factor evolutionary algorithm (MFEA) framework 
for solving the Multi-tasking Optimization (MTO) problem. The detailed flow of the MTO 
problem is illustrated in Fig. 2. The EMT algorithm can optimize several different (but 
potentially similar) tasks simultaneously and exploit the commonalities between the different 
tasks to accelerate the convergence of each task itself. MFO framework provides a new way 
of solving the algorithm, which exploits the implicit information between populations for 
knowledge transfer to accelerate the parallel evolution of the populations and ultimately obtain 
the optimal solution for each task. The purpose of MFO is to discover potential information 
that may exist between multiple tasks, allowing algorithms to use this information to facilitate 
the optimization of each other's effectiveness. This process of using the information to 
optimize each other is called knowledge transfer. The idea of knowledge transfer is 
implemented in the population by finding high-quality individuals from different tasks, 
judging whether they satisfy the transfer conditions, and if they do, we crossover the 
individuals and consider that the resulting offspring individuals will inherit the good genes 
from their parents, thus satisfying the needs of different tasks. 
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Evolutionary Multi-
Factor Optimization 

Algorithm
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Subpopulation 1

Subpopulation 2

Subpopulation 
K

...

Knowledge
Transfer

EA opertor
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Task 2   

Optimization 
Task K  

...
 

Fig. 2. The MFO algorithm uses the knowledge transfer approach to solve the MTO problem. 
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The MTO problem exists in various application domains, such as the Internet service 
domain [40], medical domain [41], etc. The researchers have worked extensively on the 
multitasking scheduling problem [42]. Zhou et al. [43] proposed an MFEA algorithm with 
individual gradient measurement (MFEA-IG) for the mobile agent path planning (MAPP) 
problem, where there would be multiple agents considered for simultaneous optimization, and 
the performance of MFEA-IG was shown to be much better than that of traditional EA through 
experiments. Yi et al. [44] proposed a novel interval MFEA (IMFEA), which uses the interval 
crowding distance of the individual set to ensure diversity in the algorithm evolution process. 
And IMFEA is applied to the robot path planning problem with multiple terrains. Bali et al. 
[45] considered the multi-UAV path planning problem, and since different UAV paths need 
to be optimized for their respective objective values, an MTO problem based on fidelity and 
time cost was proposed while using a multi-objective multifactor evolutionary algorithm (MO-
MFEA) for optimization. Zhang et al. [46] pointed out that dynamic job shop scheduling 
(DJSS) problems are characterized by dynamic uncertainty in the processing, leading to the 
problem that traditional GA cannot predict the best solution well, proposed a GA combines 
MFO method and proved the validity of the MFO strategy was demonstrated experimentally. 
Rauniyar et al. [47] proposed a pollution-routing problem (PRP) considering multiple paths 
optimized simultaneously, so to solve the constructed MTO problem simultaneously, the MFO 
is combined with the NSGA-II algorithm, which gives NSGA-II the ability to optimize 
multiple optimization problems simultaneously. Experimental results display that the MFO 
strategy is superior to the single-population EA algorithm. Liu et al. [48] pointed out that the 
traditional power scheduling problem includes both active and reactive power scheduling 
problems, and the deficiency that the EA can only solve a single optimal scheduling problem 
independently, and then proposed an MFO-based power scheduling method, which introduced 
the MO-MFEA to optimize both active and reactive power scheduling problems. Zheng et al. 
[49] proposed an MFEA algorithm based on a greedy allocation operator for the large-scale 
virtual machine placement (LVMP) problem for which the current EA cannot meet the demand, 
and experimentally demonstrated the excellence of the proposed method in optimizing the 
LVMP problem. 

3. The Formulation of the Problem 
The process of scheduling VM resources for tasks in the cloud is illustrated in Fig. 3. Suppose 
the number of users is i . They will upload m  tasks to the cloud to request the cloud resources 
with the number of VM resources n . Where the data center agent collects the tasks in the 
cloud, forwards them to the resource scheduling operator, and makes a resource scheduling 
request to the resource provider. Thus, it is a process of scheduling m  cloud tasks to n  VMs 
and finally getting the best set of scheduling solutions. 
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Fig. 3. The execution process of the cloud task scheduling. 

 
In this paper, we consider the overall time for all tasks to complete execution, so we choose 

the VM with the longest execution time as the scheduling execution time. It is calculated as 
follows: 
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Where 
Time

iVM  denotes the time taken by the i th−  VM to complete execution. 
length

jTask , 
j
filesizeTask , and j

outputsizeTask   denotes the attributes of task length, file upload size, and file 

output size of the j th−  cloud task, respectively. 
CPU

iVM , 
mip

iVM , and i
BWVM  denotes the 

computing power attribute of the i th−  VM, respectively. The detailed settings of these 
attributes are given in Section 5. 

To better describe cloud services in realistic scenarios, we charge users based on the traffic 
and bandwidth used by their tasks, and we refer to Tencent Cloud's pricing methodology [26]. 
The scheduling execution cost is calculated as follows: 
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Where _
i
BW CostVM  denotes the execution cost of the i th−  VM. bwU  denotes the 

bandwidth utilization of the current processing task. When 10%bwU ≤ , it will be charged at 
0.08/Kb. When 10%bwU > , the first 5Kb will be charged at 0.063/Kb, after that it will be 
charged at 0.25/Kb. bwTask  indicates the total bandwidth size used by the task. 

For the cloud task scheduling problem, the user requires that the appropriate VM resource 
scheduling scheme can be selected by consuming the least cost in the shortest time. Thus, the 
objective function of the cloud task scheduling problem to be solved in this paper is as follows: 
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4. Proposed Method 
In this section, we first present the idea of an NSGA-III-based algorithm for solving 
optimization problems. Second, we propose an MFO-based NSGA-III and describe the general 
framework of the proposed MFO_NSGA-III algorithm. Finally, we discuss the algorithm to 
solve the multi-objective cloud task scheduling model constructed above. 

4.1 NSGA-III for multi-objective cloud task scheduling problems 
The NSGA-III is a reference point-based non-dominated ranking algorithm [50]. It is one of 
the representatives of multi-objective optimization algorithms, and NSGA-III has been used 
in various fields for solving optimization problems [51-53] because of its excellent capability 
in solving high-dimensional multi-objective problems due to the introduction of the reference 
point mechanism. 
 

Algorithm 1. Pseudocode of NSGA-III 

1. Input: Population size N; objective function set: F(x)={f1(x), f2(x),…, fm(x)}; number of objective functions: M; 
maximum number of iterations: MaxIt. 

2. Output: A set of optimal solutions. 
3. An initial population P of size N is randomly generated in the search space; 
4. Initialize a set of reference points Z of dimension M; 
5. For each i ∈ N do 
6.     Evaluate the objective value of individual pi on F(x); 
7. End for 
8. While the MaxIt number of iterations is not reached do 
9.     For each i ∈ N/2 do 
10.         Parenti, Parenti+1 →Tournament selection of parent individuals from P; 
11.         Offspringi, Offspringi+1 →  Crossover and Mutation for Parenti, Parenti+1; 
12.        Evaluate the objective value of Offspringi and Offspringi+1 on F(x);  
13.     End for 
14.     Initpopulation = P ∪ Offspring； 
15.     Select N optimal individuals from Initpopulation by an environment selection strategy based on reference point Z; 
16.     Z→Update the reference point values on each dimension by the objective value of Initpopulation; 
17. End while 

 
The flow of the NSGA-III is illustrated in Algorithm 1. The core of the algorithm lies in 

the reference point mechanism. A set of reference points Z  is first obtained by solving the 
target dimension of the optimization problem. EA includes operators such as matching, 
environment selection, mutation operation, and crossover operation. The previous generation 
of the NSGA-II uses the crowding distance environment selection approach to get a new 
population that satisfies the conditions by the environmental selection of the merged 
populations, which leads to the problem of insufficient selection pressure of the algorithm as 
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the objective dimension of the optimization problem rises. NSGA-III provides a new 
environment selection mechanism for the algorithm by considering the Euclidean distance 
between reference points and individuals to select individuals. And the reference points are 
updated based on the objective values of the population, thus accelerating the evolution of the 
algorithm toward the true Pareto front. 

4.2 The overall Framework 
The cloud task scheduling problem usually considers the required attributes of user upload 
tasks, such as task length, file upload size, and file output size. Due to the continuous 
development of the cloud environment, the increasing demand for cloud computing from 
individual users and enterprises has led to the expansion of cloud task scheduling into a large-
scale optimization problem, and the configuration of VM resources to satisfy the demand for 
a large number of tasks. EAs tend to consume more computational resources and computation 
time to obtain a satisfactory set of solutions, which leads to EA being subject to certain 
limitations. As a result, traditional EA is no longer able to optimize the requirements for 
solving large-scale optimization problems. We decompose the large-scale cloud task 
scheduling problem into multiple subproblems and redescribe it as an MTO problem. For a 
minimization MTO problem, it is described as follows: 
 

 
1 1 2 2

1 2

1 2

min ( ) min ( ) min ( ) ... min ( )
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k k
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Where T  represents the optimization task in the MTO problem, k  represents the number 
of optimization tasks, if  represents the objective function of each optimization task, 

1, 2,...,i m= , and m  represents the number of objective functions. 
The overall framework of our proposed method is shown in Algorithm 2. The MFO strategy 

is combined with the NSGA-III. The overall flow of the proposed algorithm is shown in Fig. 
4. After obtaining the initialized population, the optimization problem currently solved needs 
to be decomposed into multiple subtasks. Assume that there are m  cloud tasks and n  VMs in 
the cloud environment. Determine the number of tasks im  for the i th−  cloud task scheduling 
task. Then the number of cloud task scheduling tasks k  is calculated as follows: 
 

 / ik m m=      (5) 
 

The purpose of the MFO strategy is to optimize multiple problems simultaneously, and this 
approach can effectively reduce the loss of computational resources and accelerates the 
convergence of the algorithm. This is because traditional EA has the disadvantage of wasting 
effective evolutionary information due to re-iterations when solving multiple optimization 
problems. The empowerment algorithm achieves effective utilization of evolution in evolution 
by dividing the population into multiple subpopulations and transferring knowledge among 
them. MFO satisfies multiple optimization problems simultaneously by dividing the 
population generated by the algorithm into multiple subpopulations and the subpopulations 
co-evolve with each other using knowledge transfer. In line 11 we use the knowledge transfer 
parameter random mating probability (RMP) in MFO that controls the transfer. j

iParent
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1j
iParent + represent the i th−  individual from subpopulation j  and subpopulation 1j + , 

respectively, and when the generated random numbers satisfy the constraints of the RMP 
parameters, implicit knowledge transfer will be achieved through crossover operations. During 
the evolutionary process, crossover operations produce offspring individuals that can inherit 
superior gene loci from parent individuals, resulting in higher-quality individuals. Therefore, 
individuals generated by using implicit knowledge transfer will have a greater likelihood of 
performing well on different tasks. If the RMP parameters are not satisfied, the subpopulations 
of different tasks will maintain an independent evolutionary process to ensure that the 
subpopulations meet the requirements of the tasks. It is worth noting that we are applying the 
MFO technique to NSGA-III to provide the algorithm with the ability to handle the MTO 
problem, while the goal of this paper is still to optimize an optimization problem, so the 
individual evaluations between different subpopulations still use the same set of objective 
functions, which does not cause additional computational resources to be wasted. 
 

Algorithm 2. Pseudocode of MFO_NSGA-III 

1. Input: Population size N; objective function set: F(x)={f1(x), f1(x),…, fm(x)}; number of objective functions: M; 
maximum number of iterations: MaxIt; transfer probability: RMP; number of tasks: k. 

2. Output: A set of optimal solutions. 
3. An initial population P of size N is randomly generated in the search space; 
4. Initialize a set of reference points Z of dimension M; 
5. For each i ∈ N do 
6.     Evaluate the objective value of individual pi on F(x); 
7. End for 
8. Subpopulationj is obtained by dividing the multitasking according to Eq. 5, j=1,2,...,k; 
9. While the MaxIt number of iterations is not reached do 
10.     Generate random numbers rand∈（0, 1）； 
11.     For each j ∈ k do 
12.         Parentj

i, Parentj+1
i →Tournament selection of parent individuals from Subpopulationj

 and      Subpopulationj+1; 
13.         Parentj

i+1, Parentj+1
i+1 →Tournament selection of parent individuals from Subpopulationj

 and      
Subpopulationj+1; 

14.         If rand<RMP do 
15.             Offspringj

i, Offspring j+1
i  →  Crossover and Mutation for Parentj

i, Parentj+1
i; 

16.             Offspringj
i+1, Offspring j+1

i+1  →  Crossover and Mutation for Parentj
i+1, Parentj+1

i+1; 
17.         Else 
18.             Offspringj

i, Offspring j
i+1  →  Crossover and Mutation for Parentj

i, Parentj
i+1; 

19.             Offspringj+1
i, Offspring j+1

i+1  →  Crossover and Mutation for Parentj+1
i, Parentj+1

i+1; 
20.         End if 
21.        Evaluate the objective value of Offspringj

 and Offspringj+1
 on F(x);  

22.     End for 
23.     Offspring = Offspring1∪Offspring2∪…∪Offspringk; 
24.     Initpopulation = P ∪ Offspring； 
25.     Select N optimal individuals from Initpopulation by an environment selection strategy based on reference point Z; 
26.     Z→Update the reference point values on each dimension by the objective value of Initpopulation; 
27. End while 
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Fig. 4. The overall flow chart of the MFO_NSGA-III algorithm. 

 
Next, this paper considers the solution process of the proposed method for a specific cloud 

task scheduling problem. Starting from the NSGA-III, when the initial population is generated, 
the tasks uploaded by the user have all been assigned to the corresponding VM. Individuals in 
the population each represent a set of feasible scheduling solutions, while the gene bits in this 
set of solutions represent the VM number to which the current task is scheduled. The 
optimization problem constructed in this paper needs to consider the task execution time and 
cost (Eq.1 and Eq.2) as an objective function. Due to the presence of virtualization technology 
in cloud services, it is possible to run each VM independently from the other, which leads to 
the fact that the solution can be divided into multiple groups of scheduling solutions of variable 
length. After dividing all the scheduling solutions using Eq.5, it is passed to the MFO 
technique where each group of divided scheduling solutions can be considered as a separate 
optimization problem. And these multiple optimization problems can be optimized 
simultaneously to find the best cloud task scheduling solution parallel using a common 
encoding between gene bits. Fig. 5 represents the scheduling solution generated by the MFO-
based NSGA-III algorithm for two optimization problems. First, the solution satisfying the 
initial decision space requirement is generated by the algorithm, assuming a total of two 
optimization problems are decomposed, and the decomposition strategy based on 
dimensionality reduction in the article will decompose this solution into decision variables 
satisfying optimization problem 1 and optimization problem 2, respectively. 
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Fig. 5. Divide a complete set of scheduling solutions into two tasks. 

5. Experiment 
In this section, we first depict the test set utilized in this paper and the simulation setup; 
secondly, we describe the comparison algorithm used in this paper and the parameter settings. 
Finally, we analyze the experimental results. 

5.1 Description of the simulation test set 
The simulation data set for this paper is built by Cloudsim [54] Software, which is a Cloud 
simulation platform proposed by Grid Lab and the Gridbus project of the University of 
Melbourne, Australia. And use the PlatEMO platform on Matlab for comparative experiments. 
Ye Tian et al. [55] proposed a multi-objective optimization tool based on MATLAB, which 
consists of 50 multi-objective optimization algorithms and 110 multi-objective optimization 
test sets. The codes of all comparison algorithms used in this paper are integrated into the 
PlatEMO platform. The experiment was run with the Win11 system, the CPU is Intel(R) Core 
(TM) i7-12700H@2.8GHz with 16.0 GB of RAM. 

In this paper, tasks, and VMs are set up using Clousim. Table 1 and Table 2 show the 
configuration of VMs and the required attributes of cloud tasks, respectively. Since this paper 
considers large-scale cloud task scheduling, cloud resources consist of 100 VM data sets with 
different parameter configurations. Meanwhile, taking the test set with 5000 tasks as an 
example, it is generated by 5000 cloud tasks with discrete and uniform distribution. Therefore, 
this paper is a random optimization process, and there is no optimal solution in the test data 
set. A black box test can be carried out. In Table 2, we gave a total of 6 test cases, including 
TS1 to TS6, and the number of tasks in the test set ranged from 5000 to 10000. 
 

Table 1. Parameter settings for virtual machine resources 
ID Mips Size Ram Bw CPU 

(core) ID Mips Size Ram Bw CPU 
(core) 

1 300 10240 1024 1536 1 51 1000 10240 3072 3072 6 
2 300 10240 1024 1536 1 52 1000 10240 3072 3072 6 
3 300 10240 1024 1536 1 53 1000 10240 3072 3072 6 
4 300 10240 1024 1536 1 54 1000 10240 3072 3072 6 
5 300 10240 1024 1536 1 55 1000 10240 3072 3072 6 
6 500 10240 2048 1536 1 56 1500 10240 4096 3072 6 
7 500 10240 2048 1536 1 57 1500 10240 4096 3072 6 
8 500 10240 2048 1536 1 58 1500 10240 4096 3072 6 
9 500 10240 2048 1536 1 59 1500 10240 4096 3072 6 

10 500 10240 2048 1536 1 60 1500 10240 4096 3072 6 
11 1000 10240 3072 1536 1 61 300 10240 1024 3072 12 
12 1000 10240 3072 1536 1 62 300 10240 1024 3072 12 
13 1000 10240 3072 1536 1 63 300 10240 1024 3072 12 
14 1000 10240 3072 1536 1 64 300 10240 1024 3072 12 
15 1000 10240 3072 1536 1 65 300 10240 1024 3072 12 
16 1500 10240 4096 1536 1 66 500 10240 2048 3072 12 
17 1500 10240 4096 1536 1 67 500 10240 2048 3072 12 
18 1500 10240 4096 1536 1 68 500 10240 2048 3072 12 



1112                                                                                               Zhao et al.: Multi-factor Evolution for Large-scale  
Multi-objective Cloud Task Scheduling 

19 1500 10240 4096 1536 1 69 500 10240 2048 3072 12 
20 1500 10240 4096 1536 1 70 500 10240 2048 3072 12 
21 300 10240 1024 1536 2 71 1000 10240 3072 3072 12 
22 300 10240 1024 1536 2 72 1000 10240 3072 3072 12 
23 300 10240 1024 1536 2 73 1000 10240 3072 3072 12 
24 300 10240 1024 1536 2 74 1000 10240 3072 3072 12 
25 300 10240 1024 1536 2 75 1000 10240 3072 3072 12 
26 500 10240 2048 2048 2 76 1500 10240 4096 6144 12 
27 500 10240 2048 2048 2 77 1500 10240 4096 6144 12 
28 500 10240 2048 2048 2 78 1500 10240 4096 6144 12 
29 500 10240 2048 2048 2 79 1500 10240 4096 6144 12 
30 500 10240 2048 2048 2 80 1500 10240 4096 6144 12 
31 1000 10240 3072 2048 2 81 300 10240 1024 6144 16 
32 1000 10240 3072 2048 2 82 300 10240 1024 6144 16 
33 1000 10240 3072 2048 2 83 300 10240 1024 6144 16 
34 1000 10240 3072 2048 2 84 300 10240 1024 6144 16 
35 1000 10240 3072 2048 2 85 300 10240 1024 6144 16 
36 1500 10240 4096 2048 2 86 500 10240 2048 6144 16 
37 1500 10240 4096 2048 2 87 500 10240 2048 6144 16 
38 1500 10240 4096 2048 2 88 500 10240 2048 6144 16 
39 1500 10240 4096 2048 2 89 500 10240 2048 6144 16 
40 1500 10240 4096 2048 2 90 500 10240 2048 6144 16 
41 300 10240 1024 2048 6 91 1000 10240 3072 6144 16 
42 300 10240 1024 2048 6 92 1000 10240 3072 6144 16 
43 300 10240 1024 2048 6 93 1000 10240 3072 6144 16 
44 300 10240 1024 2048 6 94 1000 10240 3072 6144 16 
45 300 10240 1024 2048 6 95 1000 10240 3072 6144 16 
46 500 10240 2048 2048 6 96 1500 10240 4096 6144 16 
47 500 10240 2048 2048 6 97 1500 10240 4096 6144 16 
48 500 10240 2048 2048 6 98 1500 10240 4096 6144 16 
49 500 10240 2048 2048 6 99 1500 10240 4096 6144 16 
50 500 10240 2048 2048 6 100 1500 10240 4096 6144 16 

 
Table 2. Parameter settings for Cloud Task Test Suites 

 Number of tasks Length Filesize Outputsize CPU(core) 
TS1 5000 1000~10000 100~1000 200~2000 1 
TS2 6000 1000~20000 100~2000 200~4000 1 
TS3 7000 1000~30000 100~3000 200~6000 1 
TS4 8000 1000~40000 100~4000 200~8000 1 
TS5 9000 1000~50000 100~5000 200~10000 1 
TS6 10000 1000~60000 100~6000 200~12000 1 

5.2 Comparison of algorithms and experimental setup 
The comparison algorithms selected in this paper include advanced evolutionary algorithms 
including BiGE [56], GrEA [57], KnEA [58], MOEAD/M2M [59], NSGA-III [50], and VaEA 
[60]. The parameters of these comparison algorithms were set based on the PlatEMO platform 
as shown in Table 3. All algorithms were executed based on the GA operator, the probability  
of crossover proC  and probability of mutation proM  were set to 1, the population size N  
was set to 100, and the maximum number of iterations MaxIt  was set to 10000. All 
algorithms were executed independently 30 times and the experimental results were obtained. 

 
Table 3. Comparison algorithm parameter setting 

ALGORITHMS  Parameters settings 
MFO_NSGA-III Rmp=0.3 

GrEA Div=45 
KnEA Rate = 0.5 

MOEAD-M2M K = 10 

5.3 Simulation experiment results and analysis 
The experimental results of all compared algorithms on the proposed test sets of large-scale 
cloud tasks are shown in Table 4 and Table 5. This paper addresses a multi-objective 
optimization problem that is featured by obtaining an optimal set of Pareto solutions. The 
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experimental results for all test cases are compared in Table 4 and Table 5. The experimental 
results in the table are calculated from Eq. 1 and Eq. 2. The optimal results have been marked 
in bold. The experimental results display that our proposed method MFO_NSGA-III obtains 
the optimal results regarding task execution time and task execution cost on all simulation test 
sets such as TS1 to TS6, while other comparison algorithms do not achieve satisfactory results 
in the optimization process. This is because the processed datasets are all large-scale 
optimization problems, and the conventional EA is constrained in the process of going for the 
optimal solution in the ultra-high dimensional search space, thus the problem of not being able 
to find the optimal solution region arises. MFO_NSGA-III algorithm firstly decomposes the 
large-scale problem by reducing the dimensionality; secondly, the introduced MFO strategy 
effectively uses the knowledge transfer in the evolutionary process to optimize the 
decomposed multiple sub-problems simultaneously; and finally, it also shows significant 
superior performance in the experimental results. 

 
Table 4. Experimental results of task execution time for different numbers of cloud task test sets 

Data 
set 

number 

Number 
of tasks 

MFO_NSGA-
III BiGE GrEA KnEA MOEAD/M2M NSGA-III VaEA 

TS1 5000 5.74E+04 1.34E+06 2.70E+09 6.75E+08 2.80E+15 2.70E+09 1.85E+12 
TS2 6000 1.79E+07 1.28E+11 8.93E+07 7.24E+12 3.32E+15 3.63E+13 7.25E+12 
TS3 7000 2.22E+05 8.16E+08 8.16E+08 1.96E+11 3.18E+15 2.37E+13 1.96E+10 
TS4 8000 1.47E+06 1.89E+09 5.73E+07 3.19E+13 1.45E+15 5.74E+07 1.56E+13 
TS5 9000 2.61E+06 1.53E+13 1.20E+08 1.20E+09 1.27E+15 4.09E+10 1.20E+09 
TS6 100000 3.85E+05 1.20E+12 2.50E+12 1.27E+13 4.48E+15 5.55E+13 2.37E+13 

 
Table 5. Experimental results of task execution cost for different numbers of cloud task test sets 

Data 
set 

number 

Number 
of tasks 

MFO_NSGA-
III BiGE GrEA KnEA MOEAD/M2M NSGA-III VaEA 

TS1 5000 7.64E+04 4.88E+06 8.10E+07 2.54E+09 1.43E+16 1.07E+10 3.84E+12 
TS2 6000 5.36E+05 4.01E+09 2.69E+06 2.17E+11 5.29E+16 1.09E+12 4.94E+11 
TS3 7000 4.44E+05 2.45E+07 3.53E+09 5.88E+09 5.41E+16 7.11E+11 4.08E+10 
TS4 8000 4.41E+04 7.37E+09 2.13E+08 9.57E+11 2.28E+16 1.88E+06 4.68E+11 
TS5 9000 7.83E+04 4.60E+11 3.60E+06 4.78E+09 1.75E+16 1.38E+11 4.85E+09 
TS6 100000 1.45E+06 3.59E+10 7.50E+10 3.80E+11 8.00E+16 1.67E+12 7.12E+11 

 
We analyze the convergence of all algorithms on the objective function results using the 

TS1 test set with 5000 tasks as an example. The results in the other test sets are similar to those 
of TS1, so only TS1 is presented in this section. In this paper, the maximum number of 
iterations of the algorithm is set to 100, and the difference between each result is 5 generations. 
The convergence curves of the MFO_NSGA-III algorithm and the comparison algorithm 
concerning time and cost objective values are given in Fig. 6 and Fig. 7. We can see from the 
figure that our algorithm converges by the 3rd (15th) iteration and finds a better region of 
optimal solutions than the other algorithms. In the early iterations, the MFO_NSGA-III 
algorithm did not find a good initial population and was in line with the performance of most 
of the algorithms, because the initial population generation was still too randomized, and a 
better way of generating the initial population for the problem was not found. However, the 
inclusion of the MFO technique in the iterations reduces the computational burden of the 
algorithm, which allows it to find a better range of locally optimal solutions and converge 
more quickly than other algorithms. 
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Fig. 6. Convergence plots of all algorithms in terms of task execution time for TS1. 

 

 
Fig. 7. Convergence plots of all algorithms in terms of task execution cost for TS1. 

 
The histograms of the results of the MFO_NSGA-III algorithm versus all algorithms are 

displayed in Fig. 8 and Fig. 9. As can be seen from the figure, the proposed method 
outperforms much well than the traditional EA algorithm on all large-scale test sets TS1 to 
TS6. The above experimental results prove that the MFO_NSGA-III algorithm has good 
performance and good competitiveness in dealing with large-scale cloud task scheduling 
problems. Therefore, the method can better deal with real-life large-scale problems. 
 

 
Fig. 8. The scheduling execution time for all comparison algorithms in TS1~TS6. 

 

 
Fig. 9. The scheduling execution cost for all comparison algorithms in TS1~TS6. 
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5.4 Performance of MFO_NSGA-III on Benchmark 
To further demonstrate the effectiveness of the proposed algorithm, this chapter uses a 
classical multi-objective benchmark test function set for experimental comparison with other 
optimization algorithms. The test sets used include DTLZ, BT, UF, and ZDT: 1) the DTLZ 
test benchmark suite has seven functions, of which D=12 has five functions (DTLZ2~DTLZ6); 
2) the BT test benchmark suite has nine functions, where D is all 30; 3) the UF test benchmark 
suite has ten functions, where the dimensions are all D=30. 4) the ZDT test benchmark suite 
has five functions, where D=30 has three functions (ZDT1~ZDT3), and D=10 has two 
functions (ZDT4 and ZDT6); the characteristics of these four Benchmarks are given in Table 
6. 

Table 6. Summary of Benchmark test suites 
Benchmark test suite Features 

DTLZ [61] Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler 
BT [62] Benchmark MOP with bias feature 
UF [63] Unconstrained benchmark MOP 

ZDT [64] Benchmark MOP proposed by Zitzler, Deb, and Thiele 
 
The following performance metrics are used in the experiments: 
Inverted Generational Distance (IGD) Comprehensive Metric can reflect both convergence 

and distribution. It is by calculating the minimum distance sum between each individual on 
the True Pareto front surface and the set of individuals obtained by the algorithm. This 
indicator is calculated as follows: 
 

* *

* * 21( ) min || ||
p POF

p POF

IGD POF POF p p
n ∈

∈

= −∑，   (6) 

Where *POF  is the True Pareto Front of a given multi-objective optimization problem, 
POF  is an approximation set obtained by an MOEA and n is the number of individuals in 
the *POF . 

The comparison algorithms selected for this chapter are MOEAD-M2M, MOPSO, RVEA, 
and MOEAD. All algorithm settings are set according to the PlatEMO platform. A summary 
of the algorithm parameter settings is shown in Table 7. 

 
Table 7. Comparison algorithm parameter setting in Benchmark experiments 

ALGORITHMS  Parameters settings 
MOEAD-M2M K = 10 

MOPSO Div = 10 
RVEA Alpha = 2; Fr = 0.1 

MOEA/D Type = 1 
 
The results of the mean IGD, and standard deviation for all compared algorithms on the 

four benchmark test suites are given in Table 8. The best results in the tables are marked in 
bold. In Table 8 we use the Wilcoxon test to verify the difference between the algorithm and 
other algorithms in terms of experimental results. The Wilcoxon test with a degree of 
confidence of 95% was used to assess the significance of the differences between the compared 
algorithms. In the experiments "+", "-" and "=" represent that the performance of the 
comparison algorithm is better than, weaker than, and equal to the performance of 
MFO_NSGA-III, respectively. 
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Table 8. IGD values for algorithms on all Benchmark suites 
Problem M D MOEADM2M MOPSO RVEA MOEAD MFO_NSGAIII 
DTLZ1 3 10 4.3540e+2(6.02e+1) + 1.6844e+3(5.91e+2) - 1.2066e+3(8.39e+1) + 5.9097e+2(7.57e+1) + 1.2696e+3(8.47e+1) 
DTLZ2 3 12 1.5678e-1 (7.08e-3) - 1.0461e-1 (1.17e-2) - 5.5957e-2 (7.22e-4) = 5.4905e-2 (2.21e-4) + 5.5706e-2 (2.46e-4) 
DTLZ3 3 12 7.2548e+1 (2.27e+1) - 1.4069e+2 (7.14e+1) - 1.6862e+1 (5.95e+0) + 1.3629e+1 (9.57e+0) + 3.0813e+1 (8.81e+0) 
DTLZ4 3 12 1.2679e-1 (1.43e-2) + 3.7647e-1 (1.47e-1) - 5.5822e-2 (6.44e-4) + 4.9289e-1 (3.11e-1) - 1.3705e-1 (1.84e-1) 
DTLZ5 3 12 4.5267e-2 (1.15e-2) - 1.2866e-2 (2.49e-3) = 8.2559e-2 (1.21e-2) - 3.2277e-2 (9.22e-4) - 1.2389e-2 (1.20e-3) 
DTLZ6 3 12 1.0371e+0 (4.81e-1) - 2.8940e+0 (8.42e-1) - 1.3291e-1 (1.41e-1) - 8.5980e-2 (2.00e-1) - 4.7994e-2 (1.12e-1) 
DTLZ7 3 22 1.0497e+0 (4.79e-1) - 4.4507e+0 (1.02e+0) - 2.1845e-1 (5.41e-2) - 1.6128e-1 (4.01e-2) - 9.3510e-2 (5.35e-3) 

BT1 2 30 4.2417e+0 (9.18e-2) - 4.6226e+0 (2.03e-1) - 3.6211e+0 (1.15e-1) - 3.8342e+0 (1.09e-1) - 3.3411e+0 (8.33e-2) 
BT2 2 30 2.2900e+0 (1.17e-1) - 3.1083e+0 (2.61e-1) - 1.1691e+0 (7.33e-2) - 1.2501e+0 (9.93e-2) - 9.5510e-1 (3.01e-2) 
BT3 2 30 4.4297e+0 (1.04e-1) - 4.7694e+0 (1.98e-1) - 3.2017e+0 (2.34e-1) - 3.3369e+0 (2.18e-1) - 2.9058e+0 (8.29e-2) 
BT4 2 30 4.2657e+0 (9.18e-2) - 4.6483e+0 (1.52e-1) - 3.1684e+0 (1.28e-1) - 3.4710e+0 (1.29e-1) - 2.8450e+0 (9.63e-2) 
BT5 2 30 4.3409e+0 (1.07e-1) - 4.8035e+0 (1.90e-1) - 3.6488e+0 (1.34e-1) - 3.8035e+0 (1.30e-1) - 3.3503e+0 (8.51e-2) 
BT6 2 30 1.1711e+0 (8.96e-1) - 3.1794e+0 (2.53e-1) - 5.3659e-1 (2.10e-1) = 9.0544e-1 (2.96e-1) - 5.3410e-1 (1.30e-1) 
BT7 2 30 3.0867e+0 (3.26e-1) - 3.2042e+0 (3.79e-1) - 6.2299e-1 (2.12e-1) = 5.6582e-1 (1.82e-1) = 6.8995e-1 (3.18e-1) 
BT8 2 30 5.0960e+0 (1.33e+0) - 7.5588e+0 (7.33e-1) - 2.9279e+0 (4.18e-1) = 4.5378e+0 (9.22e-1) - 2.9744e+0 (4.37e-1) 
BT9 3 30 4.6362e+0 (2.77e-1) - 4.1359e+0 (1.88e-1) - 2.7118e+0 (1.14e-1) - 2.6276e+0 (3.39e-1) - 2.5469e+0 (7.65e-2) 
UF1 2 30 2.5368e-1 (5.43e-2) - 6.4170e-1 (1.20e-1) - 1.5722e-1 (5.08e-2) - 3.5099e-1 (1.16e-1) - 1.1918e-1 (2.79e-2) 
UF2 2 30 7.6017e-2 (7.34e-3) - 1.2682e-1 (2.14e-2) - 1.0803e-1 (1.13e-2) - 2.0261e-1 (7.00e-2) - 6.9379e-2 (1.30e-2) 
UF3 2 30 3.7837e-1 (7.72e-2) = 5.5033e-1 (2.52e-2) - 4.3941e-1 (4.50e-2) - 3.2801e-1 (1.87e-2) + 3.8511e-1 (4.56e-2) 
UF4 2 30 8.4697e-2 (5.40e-3) - 1.1004e-1 (1.27e-2) - 1.4825e-1 (7.39e-3) - 1.2801e-1 (5.32e-3) - 7.9066e-2 (3.24e-3) 
UF5 2 30 2.0820e+0 (3.43e-1) - 3.3852e+0 (3.83e-1) - 7.7598e-1 (2.31e-1) - 1.3931e+0 (3.45e-1) - 5.4200e-1 (1.62e-1) 
UF6 2 30 1.0239e+0 (1.91e-1) - 3.0453e+0 (5.15e-1) - 5.2628e-1 (6.11e-2) - 5.9843e-1 (2.25e-1) - 4.3662e-1 (1.03e-1) 
UF7 2 30 2.6519e-1 (8.83e-2) - 7.0482e-1 (1.26e-1) - 2.6272e-1 (9.38e-2) - 4.7605e-1 (1.23e-1) - 1.3042e-1 (1.18e-1) 
UF8 3 30 4.9139e-1 (9.18e-2) = 5.1401e-1 (5.71e-2) = 3.7688e-1 (3.49e-2) + 5.7882e-1 (2.37e-1) = 4.7848e-1 (5.01e-2) 
UF9 3 30 5.9681e-1 (4.19e-2) - 6.0662e-1 (4.66e-2) - 4.2276e-1 (6.83e-2) = 5.4972e-1 (8.65e-2) - 4.2018e-1 (7.87e-2) 

UF10 3 30 4.4743e+0 (6.39e-1) - 2.7125e+0 (3.25e-1) - 9.0492e-1 (2.60e-1) = 7.3978e-1 (8.73e-2) = 8.4915e-1 (2.89e-1) 
ZDT1 2 30 9.4270e-2 (5.88e-2) - 9.4105e-1 (2.79e-1) - 1.3351e-1 (2.86e-2) - 1.6453e-1 (8.67e-2) - 1.4612e-2 (2.14e-3) 
ZDT2 2 30 1.1695e-1 (9.18e-2) - 1.7714e+0 (3.77e-1) - 1.6027e-1 (2.37e-2) - 5.3213e-1 (8.49e-2) - 2.1459e-2 (3.30e-3) 
ZDT3 2 30 2.3206e-1 (8.74e-2) - 1.1107e+0 (2.36e-1) - 1.6447e-1 (2.69e-2) - 1.5319e-1 (4.45e-2) - 1.5227e-2 (5.68e-3) 
ZDT4 2 10 1.8534e+1 (5.76e+0) - 1.8643e+1 (8.52e+0) - 1.1143e+0 (4.05e-1) + 4.9005e-1 (2.01e-1) + 1.8215e+0 (6.58e-1) 
ZDT6 2 10 7.1544e-3 (1.47e-3) + 6.8998e-1 (1.32e+0) = 3.4056e-1 (1.05e-1) - 8.0853e-2 (2.47e-2) + 2.8963e-1 (7.03e-2) 

+/-/= 3/26/2 0/28/3 5/20/6 6/22/3  

 
The experimental results of IGD demonstrate that MFO_NSGA-III achieves a large 

number of best IGD results on the four benchmark test suites. Meanwhile, the MFO_NSGA-
III algorithm obtained a total of 20 best results, while the performance of the algorithm was 
significantly better than the other algorithms compared. The above results demonstrate that 
MFO_NSGA-III is very competitive in solving the MOPs. 

We first compare the experimental comparison of the objective function values obtained 
on the simulation test set, which aims to demonstrate that the proposed algorithm is able to 
obtain the best decision variables with limited computational resources, and that the 
MFO_NSGA-III algorithm is more practical when faced with large-scale optimization 
problems in real-world scenarios than other algorithms. Secondly, we plot the convergence of 
the objective function for the convergence performance of the algorithm. The purpose of this 
experiment is to demonstrate that the proposed algorithm can reach convergence and obtain 
the scheduling solution at a faster iteration rate, and the MFO_NSGA-III algorithm shows a 
better competitive performance compared with other algorithms. Finally, to further 
demonstrate the effectiveness of the MFO_NSGA-III algorithm, we perform an experimental 
comparison of the evaluation metrics in the proposed benchmark test function suite, which 
aims to demonstrate that the proposed algorithm is more effective in finding TruePOF, and 
that the MFO_NSGA-III algorithm shows its performance in several benchmark suites 
compared to other algorithms. The purpose of this experiment is to demonstrate that the 
proposed algorithm is more effective in finding TruePOF, and the MFO_NSGA-III algorithm 
shows its superior performance in several benchmark suites compared to other algorithms. 
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5. Conclusion 
With information technology development, the complexity of tasks and heterogeneity of 
resources in cloud task scheduling problems are increasing, and large-scale optimization 
models can better describe the actual problems. In this paper, an MFO-based NSGA-III is 
proposed and applied to a large-scale scenario optimization problem of cloud task scheduling 
VM resources. We first construct a multi-objective cloud task scheduling model considering 
task execution time and cost. And recharacterize it as an MTO problem using a decomposition-
based strategy. Second, the MFO strategy is combined with the NSGA-III and used to get the 
optimal scheduling solution for the large-scale cloud task scheduling problem. In the 
experimental part, experimental comparisons with other advanced multi-objective 
optimization algorithms are performed, and the results display that our proposed method 
obtained the optimal experimental results, demonstrates the effectiveness and competitive 
shape, and is more adapted for solving large-scale optimization problems than other EAs. 

Although our proposed method has a good prospect of solving large-scale optimization 
problems. But how to generate a higher quality set of initial populations in a population-based 
algorithm is crucial to guide the entire evolutionary process. We need to take into account the 
characteristics of solving optimization problems to find the most suitable initial population, 
which is a good topic for the algorithm to search the region where the best solution is located. 
In future work, we will continue to drill down on MFO-based optimization algorithms for how 
to effectively use problem characteristics to generate populations and effectively handle higher 
dimensional optimization problems, and we design more problem-specific solution strategies 
and combine them with optimization algorithms to propose more targeted and practically 
meaningful solution algorithms. 
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