• 제목/요약/키워드: objective algorithm

검색결과 2,791건 처리시간 0.029초

패턴분류에서 학습방법 개선 (Improvement of learning method in pattern classification)

  • 김명찬;최종호
    • 제어로봇시스템학회논문지
    • /
    • 제3권6호
    • /
    • pp.594-601
    • /
    • 1997
  • A new algorithm is proposed for training the multilayer perceptrion(MLP) in pattern classification problems to accelerate the learning speed. It is shown that the sigmoid activation function of the output node can have deterimental effect on the performance of learning. To overcome this detrimental effect and to use the information fully in supervised learning, an objective function for binary modes is proposed. This objective function is composed with two new output activation functions which are selectively used depending on desired values of training patterns. The effect of the objective function is analyzed and a training algorithm is proposed based on this. Its performance is tested in several examples. Simulation results show that the performance of the proposed method is better than that of the conventional error back propagation (EBP) method.

  • PDF

Pareto-Based Multi-Objective Optimization for Two-Block Class-Based Storage Warehouse Design

  • Sooksaksun, Natanaree
    • Industrial Engineering and Management Systems
    • /
    • 제11권4호
    • /
    • pp.331-338
    • /
    • 2012
  • This research proposes a Pareto-based multi-objective optimization approach to class-based storage warehouse design, considering a two-block warehouse that operates under the class-based storage policy in a low-level, picker-to-part and narrow aisle warehousing system. A mathematical model is formulated to determine the number of aisles, the length of aisle and the partial length of each pick aisle to allocate to each product class that minimizes the travel distance and maximizes the usable storage space. A solution approach based on multiple objective particle swarm optimization is proposed to find the Pareto front of the problems. Numerical examples are given to show how to apply the proposed algorithm. The results from the examples show that the proposed algorithm can provide design alternatives to conflicting warehouse design decisions.

Multi Objective Vehicle and Drone Routing Problem with Time Window

  • Park, Tae Joon;Chung, Yerim
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.167-178
    • /
    • 2019
  • In this paper, we study the multi-objectives vehicle and drone routing problem with time windows, MOVDRPTW for short, which is defined in an urban delivery network. We consider the dual modal delivery system consisting of drones and vehicles. Drones are used as a complement to the vehicle and operate in a point to point manner between the depot and the customer. Customers make various requests. They prefer to receive delivery services within the predetermined time range and some customers require fast delivery. The purpose of this paper is to investigate the effectiveness of the delivery strategy of using drones and vehicles together with a multi-objective measures. As experiment datasets, we use the instances generated based on actual courier delivery data. We propose a hybrid multi-objective evolutionary algorithm for solving MOVDRPTW. Our results confirm that the vehicle-drone mixed strategy has 30% cost advantage over vehicle only strategy.

비선형 분산안전법을 이용한 최적장기송전계률 알고리 (Optimal Long-term Transmission Planning Algorithm using Non-linear Branch-and-bound Method)

  • 박영문;신중린
    • 대한전기학회논문지
    • /
    • 제37권5호
    • /
    • pp.272-281
    • /
    • 1988
  • The problem of optimal transmission system planning is to find the most economical locations and time of transmission line construction under the various constraints such as available rights-of-way, finances, the technical characteristics of power system, and the reliability criterion of power supply, and so on. In this paper the constraint of right-of-way is represented as a finite set of available rights-of-way. And the constructed for a unit period. The electrical constraints are represented in terms of line overload and steady state stability margin. And the reliability criterion is dealt with the suppression of failure cost and with single-contingency analysis. In general, the transmission planning problem requires integer solutions and its objective function is nonlinear. In this paper the objective function is defined as a sum of the present values of construction cost and the minimum operating cost of power system. The latter is represented as a sum of generation cost and failure cost considering the change of yearly load, economic dispatch, and the line contingency. For the calculation of operating cost linear programming is adopted on the base of DC load flow calculation, and for the optimization of main objective function nonlinear Branch-and-Bound algorithm is used. Finally, for improving the efficiency of B & B algorithm a new sensitivity analysis algorithm is proposed.

Weighted sum Pareto optimization of a three dimensional passenger vehicle suspension model using NSGA-II for ride comfort and ride safety

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.469-479
    • /
    • 2018
  • The present research study utilizes a multi-objective optimization method for Pareto optimization of an eight-degree of freedom full vehicle vibration model, adopting a non-dominated sorting genetic algorithm II (NSGA-II). In this research, a full set of ride comfort as well as ride safety parameters are considered as objective functions. These objective functions are divided in to two groups (ride comfort group and ride safety group) where the ones in one group are in conflict with those in the other. Also, in this research, a special optimizing technique and combinational method consisting of weighted sum method and Pareto optimization are applied to transform Pareto double-objective optimization to Pareto full-objective optimization which can simultaneously minimize all objectives. Using this technique, the full set of ride parameters of three dimensional vehicle model are minimizing simultaneously. In derived Pareto front, unique trade-off design points can selected which are non-dominated solutions of optimizing the weighted sum comfort parameters versus weighted sum safety parameters. The comparison of the obtained results with those reported in the literature, demonstrates the distinction and comprehensiveness of the results arrived in the present study.

A MODIFIED BFGS BUNDLE ALGORITHM BASED ON APPROXIMATE SUBGRADIENTS

  • Guo, Qiang;Liu, Jian-Guo
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1239-1248
    • /
    • 2010
  • In this paper, an implementable BFGS bundle algorithm for solving a nonsmooth convex optimization problem is presented. The typical method minimizes an approximate Moreau-Yosida regularization using a BFGS algorithm with inexact function and the approximate gradient values which are generated by a finite inner bundle algorithm. The approximate subgradient of the objective function is used in the algorithm, which can make the algorithm easier to implement. The convergence property of the algorithm is proved under some additional assumptions.

Optimum design of plane steel frames with PR-connections using refined plastic hinge analysis and genetic algorithm

  • Yun, Young Mook;Kang, Moon Myung;Lee, Mal Suk
    • Structural Engineering and Mechanics
    • /
    • 제23권4호
    • /
    • pp.387-407
    • /
    • 2006
  • A Genetic Algorithm (hereinafter GA) based optimum design algorithm and program for plane steel frames with partially restrained connections is presented. The algorithm was incorporated with the refined plastic hinge analysis method, in which geometric nonlinearity was considered by using the stability functions of beam-column members and material nonlinearity was considered by using the gradual stiffness degradation model that included the effects of residual stress, moment redistribution by the occurrence of plastic hinges, partially restrained connections, and the geometric imperfection of members. In the genetic algorithm, a tournament selection method and micro-GAs were employed. The fitness function for the genetic algorithm was expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions were expressed, respectively, as the weight of steel frames and the constraint functions which account for the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimum design results of two plane steel frames with fully and partially restrained connections were compared.

다중플랜트 네트워크에서의 공급사슬계획 (Supply Chain Planning in Multiplant Network)

  • 정재혁;문치웅;김종수
    • 한국산업경영시스템학회:학술대회논문집
    • /
    • 한국산업경영시스템학회 2002년도 춘계학술대회
    • /
    • pp.203-208
    • /
    • 2002
  • In case of the problems with multiple plants, alternative operation sequence, alternative machine, setup time, and transportation time between plants, we need a robust methodology for the integration of process planning and scheduling in supply chain. The objective of this model is to minimize the tardiness and to maximize the resource utilization. So, we propose a multi-objective model with limited-capacity constraint. To solve this model, we develope an efficient and flexible model using adaptive genetic algorithm(AGA), compared to traditional genetic algorithm(TGA)

  • PDF

적응 유전자 알고리즘을 이용한 다수의 성능 사양을 만족하는 제어계의 설계 (A Design Of Control System Satisfying Multi-Performance Specifications Using Adaptive Genetic Algorithms)

  • 윤영진;원태현;이영진;이만형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.621-624
    • /
    • 2002
  • The purpose of this paper is a study on getting proper gain set of PID controller which satisfies multi-performance specifications of the control system. The multi-objective optimization method is introduced to evaluate specifications, and the genetic algorithm is used as an optimal problem solver. To enhance the performance of genetic algorithm itself, adaptive technique is included. According to the proposed method in this paper, finding suitable gain set can be more easily accomplishable than manual gain seeking and tuning.

  • PDF

직교배열표를 이용한 다목적 퍼지제어 알고리즘 개발 및 응용 (Development of Fuzzy Control Algorithm for Multi-Objective Problem using Orthogonal Array and its Applications)

  • 김추호;박성호;이종원;변증남
    • 한국지능시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.368-373
    • /
    • 2000
  • In this paper, a control algorthm suitable for multi-objective control is proposed based on the orthogonal array which is normally used in statics and industrial engineering. And a newly defined Nthcertainty factor is suggested, which can effectively exclude the less confident rule. The Nth-certainty factor is defined by the F-values of the ANOVA(analysis of variance) table. It is shown that the algorithm can be successfully adopted to the design of controller for an active magnetic bearing system.

  • PDF