• Title/Summary/Keyword: object-based approach

Search Result 870, Processing Time 0.026 seconds

Application of Object-Oriented Methodology for Structural Analysis and Design (구조해석에서 객체지향 방법론의 도입)

  • 이주영;김홍국;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.160-169
    • /
    • 1995
  • This study presents an application of object-oriented methodology for structural dcsign process. A prototype system of integrated a structural design system is developed by introducing a structural analysis object model(SAOM) and structural design object model(SDOM). The SAOM module. which is modeled as a part of structural member, performs structural analysis using FEM approach and the SDOM module checks structural members based on Korea steel design standard. Above mentionedmodelsareabstraclencapsulatibleandreusable.

  • PDF

Feature Extraction Of Content-based image retrieval Using object Segmentation and HAQ algorithm (객체 분할과 HAQ 알고리즘을 이용한 내용 기반 영상 검색 특징 추출)

  • 김대일;홍종선;장혜경;김영호;강대성
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.453-456
    • /
    • 2003
  • Compared with other features of the image, color features are less sensitive to noise and background complication. Besides, this adding to object segmentation has more accuracy of image retrieval. This paper presents object segmentation and HAQ(Histogram Analysis and Quantization) algorithm approach to extract features(the object information and the characteristic colors) of an image. The empirical results shows that this method presents exactly spatial and color information of an image as image retrieval's feature.

  • PDF

Visual Tracking Using Monte Carlo Sampling and Background Subtraction (확률적 표본화와 배경 차분을 이용한 비디오 객체 추적)

  • Kim, Hyun-Cheol;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.16-22
    • /
    • 2011
  • This paper presents the multi-object tracking approach using the background difference and particle filtering by monte carlo sampling. We apply particle filters based on probabilistic importance sampling to multi-object independently. We formulate the object observation model by the histogram distribution using color information and the object dynaminc model for the object motion information. Our approach does not increase computational complexity and derive stable performance. We implement the whole Bayesian maximum likelihood framework and describes robust methods coping with the real-world object tracking situation by the observation and transition model.

Anomalous Event Detection in Traffic Video Based on Sequential Temporal Patterns of Spatial Interval Events

  • Ashok Kumar, P.M.;Vaidehi, V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.169-189
    • /
    • 2015
  • Detection of anomalous events from video streams is a challenging problem in many video surveillance applications. One such application that has received significant attention from the computer vision community is traffic video surveillance. In this paper, a Lossy Count based Sequential Temporal Pattern mining approach (LC-STP) is proposed for detecting spatio-temporal abnormal events (such as a traffic violation at junction) from sequences of video streams. The proposed approach relies mainly on spatial abstractions of each object, mining frequent temporal patterns in a sequence of video frames to form a regular temporal pattern. In order to detect each object in every frame, the input video is first pre-processed by applying Gaussian Mixture Models. After the detection of foreground objects, the tracking is carried out using block motion estimation by the three-step search method. The primitive events of the object are represented by assigning spatial and temporal symbols corresponding to their location and time information. These primitive events are analyzed to form a temporal pattern in a sequence of video frames, representing temporal relation between various object's primitive events. This is repeated for each window of sequences, and the support for temporal sequence is obtained based on LC-STP to discover regular patterns of normal events. Events deviating from these patterns are identified as anomalies. Unlike the traditional frequent item set mining methods, the proposed method generates maximal frequent patterns without candidate generation. Furthermore, experimental results show that the proposed method performs well and can detect video anomalies in real traffic video data.

Design Evaluation of Portable Electronic Products Using AR-Based Interaction and Simulation (증강현실 기반 상호작용과 시뮬레이션을 이용한 휴대용 전자제품의 설계품평)

  • Park, Hyung-Jun;Moon, Hee-Cheol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.3
    • /
    • pp.209-216
    • /
    • 2008
  • This paper presents a novel approach to design evaluation of portable consumer electronic (PCE) products using augmented reality (AR) based tangible interaction and functional behavior simulation. In the approach, the realistic visualization is acquired by overlaying the rendered image of a PCE product on the real world environment in real-time using computer vision based augmented reality. For tangible user interaction in an AR environment, the user creates input events by touching specified regions of the product-type tangible object with the pointer-type tangible object. For functional behavior simulation, we adopt state transition methodology to capture the functional behavior of the product into a markup language-based information model, and build a finite state machine (FSM) to controls the transition between states of the product based on the information model. The FSM is combined with AR-based tangible objects whose operation in the AR environment facilitates the realistic visualization and functional simulation of the product, and thus realizes faster product design and development. Based on the proposed approach, a product design evaluation system has been developed and applied for the design evaluation of various PCE products with highly encouraging feedbacks from users.

Generating Cartesian Tool Paths for Machining Sculptured Surfaces from 3D Measurement Data (3차원 측정자료부터 자유곡면의 가공을 위한 공구경로생성)

  • Ko, Byung-Chul;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.123-137
    • /
    • 1993
  • In this paper, an integrated approach is proposed to generate gouging-free Cartesian tool paths for machining sculptured surfaces from 3D measurement data. The integrated CAD/CAM system consists of two modules : offset surface module an Carteian tool path module. The offset surface module generates an offset surface of an object from its 3D measurement data, using an offsetting method and a surface fitting method. The offsetting is based on the idea that the envelope of an inversed tool generates an offset surface without self-intersection as the center of the inversed tool moves along on the surface of an object. The surface-fitting is the process of constructing a compact representation to model the surface of an object based on a fairly large number of data points. The resulting offset surtace is a composite Bezier surface without self-intersection. When an appropriate tool-approach direction is selected, the tool path module generates the Cartesian tool paths while the deviation of the tool paths from the surface stays within the user-specified tolerance. The tool path module is a two-step process. The first step adaptively subdivides the offset surface into subpatches until the thickness of each subpatch is small enough to satisfy the user-defined tolerance. The second step generates the Cartesian tool paths by calculating the intersection of the slicing planes and the adaptively subdivided subpatches. This tool path generation approach generates the gouging-free Cartesian CL tool paths, and optimizes the cutter movements by minimizing the number of interpolated points.

  • PDF

A Practical Approach to Spatial Object Indexing Using Minimum Bounding Rectangles (MBR을 이용한 실용적 공간 데이터 관리)

  • 이재호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.177-179
    • /
    • 1999
  • We present a simple and efficient spatial object indexing scheme based on the minimum bounding rectangles (MBR) of the objects for use in applications in geographic information system (GIS). We also provide the rationale behind the simple indexing scheme instead of other complex hierarchical indexing approaches such as the R-tree and its variants.

  • PDF

Object Classification based on Weakly Supervised E2LSH and Saliency map Weighting

  • Zhao, Yongwei;Li, Bicheng;Liu, Xin;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.364-380
    • /
    • 2016
  • The most popular approach in object classification is based on the bag of visual-words model, which has several fundamental problems that restricting the performance of this method, such as low time efficiency, the synonym and polysemy of visual words, and the lack of spatial information between visual words. In view of this, an object classification based on weakly supervised E2LSH and saliency map weighting is proposed. Firstly, E2LSH (Exact Euclidean Locality Sensitive Hashing) is employed to generate a group of weakly randomized visual dictionary by clustering SIFT features of the training dataset, and the selecting process of hash functions is effectively supervised inspired by the random forest ideas to reduce the randomcity of E2LSH. Secondly, graph-based visual saliency (GBVS) algorithm is applied to detect the saliency map of different images and weight the visual words according to the saliency prior. Finally, saliency map weighted visual language model is carried out to accomplish object classification. Experimental results datasets of Pascal 2007 and Caltech-256 indicate that the distinguishability of objects is effectively improved and our method is superior to the state-of-the-art object classification methods.

A Study on Kohenen Network based on Path Determination for Efficient Moving Trajectory on Mobile Robot

  • Jin, Tae-Seok;Tack, HanHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • We propose an approach to estimate the real-time moving trajectory of an object in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the inputoutput relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

Generating LOTOS Specifications from UML Static Structure Diagrams (UML 정적구조 다이아그램으로부터 LOTOS 명세 생성)

  • Kim, Cheol-Hong;Ahn, Yu-Whoan;Lee, Won-Chun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3500-3513
    • /
    • 1999
  • It is recognized that object-oriented methods and formal methods are two different main streams that will influence on the future direction of software engineering. A merging effort on these two technologies, named "a formal approach on system specifications using object-oriented methods" emerges rapidly and produces remarkable research results LOTOS is well-suited to an object-based approach. However, to provide a full object-oriented approach, we need to model generalization (i.e. inheritance and polymorphism). Most authors who have examined this topic have proposed extensions to LOTOS. As an extension of such an effort, this paper proposes a method that generates LOTOS specification from static structure diagrams in UML.

  • PDF