• 제목/요약/키워드: object-based analysis

Search Result 1,778, Processing Time 0.033 seconds

Passivity Problem of Micro-Teleoperation Handling a Insignificant Inertial Object.

  • Park, Kyongho;W.K. Chung;Y. Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.32.5-32
    • /
    • 2001
  • There has been many teleoperation systems handling the micro object. However, the stability problem for these systems has not been mentioned yet. Historically, Lawrence[1] proposed the Transparency-Optimized Architecture and passivity theorem for stability analysis of bilateral teleoperation. He claimed that unless the task(or environment) impedance contains significance inertial behavior, Passivity condition for Transparency-optimized architecture is not satisfied. In this paper we propose one method which satisfies passivity condition for the micro-teleoperation system handling a insignificant inertial object and is based on the structure of Lawrence and Hashtrudi-Zaad[2] and velocity-force scaling.

  • PDF

Performance analysis of Object detection using Self-Knowledge distillation method (자가 지식 증류 기법을 적용한 객체 검출 기법의 성능 분석)

  • Dong-Jun Kim;Seunghyun Lee;Byung-Cheol Song
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.126-128
    • /
    • 2022
  • 경량화 기법 중 하나인 Knowledge distillation 은 최근 object detection task 에 적용되고 있다. Knowledge distillation 은 3 가지 범주로 나뉘는데 그들 중에서 Self-Knowledge distillation 은 기존의 Knowledge distillation 에서의 pre-trained teacher 에 대한 의존성 문제를 완화시켜준다. Self-Knowledge distillation 또한 object detection task 에 적용되어 training cost 를 줄이고 고전적인 teacher-based methods 보다 좋은 성능을 성취했다.

  • PDF

An Algorithm for Color Object Tracking (색상변화를 갖는 객체추적 알고리즘)

  • Whoang, In-Teck;Choi, Kwang-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.827-837
    • /
    • 2007
  • Conventional color-based object tracking using Mean Shift algorithm does not provide appropriate result when initial color distribution disappears. In this paper we propose a tracking algorithm that updates the object color sample when the color is changing. Mean Shift analysis is first used to derive the object candidate with maximum increase in density direction from current position. The color information of object is updated iteratively. The proposed algorithm achieves accurate tracking of objects when initial color samples are changed and finally disappeared. The validity of the effective approach is illustrated by the experimental results.

  • PDF

3D motion estimation using multisensor data fusion (센서융합을 이용한 3차원 물체의 동작 예측)

  • 양우석;장종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.679-684
    • /
    • 1993
  • This article presents an approach to estimate the general 3D motion of a polyhedral object using multiple, sensory data some of which may not provide sufficient information for the estimation of object motion. Motion can be estimated continuously from each sensor through the analysis of the instantaneous state of an object. We have introduced a method based on Moore-Penrose pseudo-inverse theory to estimate the instantaneous state of an object. A linear feedback estimation algorithm is discussed to estimate the object 3D motion. Then, the motion estimated from each sensor is fused to provide more accurate and reliable information about the motion of an unknown object. The techniques of multisensor data fusion can be categorized into three methods: averaging, decision, and guiding. We present a fusion algorithm which combines averaging and decision.

  • PDF

A Study on the Dimensions of Object-oriented Systems Modeling : Theory and an Exploratory Evaluation (객체지향 시스템 모델링 차원 : 이론 및 탐색적 평가)

  • 안준모
    • The Journal of Information Technology and Database
    • /
    • v.8 no.1
    • /
    • pp.41-65
    • /
    • 2001
  • This study proposes evaluation dimensions of object-oriented systems modelling tools and activities available in object-oriented systems development practices. The dimensions ale developed based on previous research in cognitive psychology, information systems modeling study, and object-oriented systems analysis arid design areas. The proposed dimension is composed of two dimensions. The one dimension includes abstraction levels of modelling and the other includes process and representation in modeling activities. Experts on object-oriented modeling were selected to evaluate the practical validity of the proposed dimensions and applications of major object-oriented modeling tools during systems development project. Most of the tools were observed to be used for representing objects rather than for modeling the process of related objects. The proposed modeling dimension will be evaluated for acquiring general validity in future empirical research.

  • PDF

A Method of Object Identification from Procedural Programs (절차적 프로그램으로부터의 객체 추출 방법론)

  • Jin, Yun-Suk;Ma, Pyeong-Su;Sin, Gyu-Sang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2693-2706
    • /
    • 1999
  • Reengineering to object-oriented system is needed to maintain the system and satisfy requirements of structure change. Target systems which should be reengineered to object-oriented system are difficult to change because these systems have no design document or their design document is inconsistent of source code. Using design document to identifying objects for these systems is improper. There are several researches which identify objects through procedural source code analysis. In this paper, we propose automatic object identification method based on clustering of VTFG(Variable-Type-Function Graph) which represents relations among variables, types, and functions. VTFG includes relations among variables, types, and functions that may be basis of objects, and weights of these relations. By clustering related variables, types, and functions using their weights, our method overcomes limit of existing researches which identify too big objects or objects excluding many functions. The method proposed in this paper minimizes user's interaction through automatic object identification and make it easy to reenginner procedural system to object-oriented system.

  • PDF

A COMPARISON OF OBJECTED-ORIENTED AND PIXELBASED CLASSIFICATION METHODS FOR FUEL TYPE MAP USING HYPERION IMAGERY

  • Yoon, Yeo-Sang;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.297-300
    • /
    • 2006
  • The knowledge of fuel load and composition is important for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential of reduction the uncertainty in mapping fuels and offers the best approach for improving our abilities. This paper compared the results of object-oriented classification to a pixel-based classification for fuel type map derived from Hyperion hyperspectral data that could be enable to provide this information and allow a differentiation of material due to their typical spectra. Our methodological approach for fuel type map is characterized by the result of the spectral mixture analysis (SMA) that can used to model the spectral variability in multi- or hyperspectral images and to relate the results to the physical abundance of surface constitutes represented by the spectral endmembers. Object-oriented approach was based on segment based endmember selection, while pixel-based method used standard SMA. To validate and compare, we used true-color high resolution orthoimagery

  • PDF

Saliency Detection based on Global Color Distribution and Active Contour Analysis

  • Hu, Zhengping;Zhang, Zhenbin;Sun, Zhe;Zhao, Shuhuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5507-5528
    • /
    • 2016
  • In computer vision, salient object is important to extract the useful information of foreground. With active contour analysis acting as the core in this paper, we propose a bottom-up saliency detection algorithm combining with the Bayesian model and the global color distribution. Under the supports of active contour model, a more accurate foreground can be obtained as a foundation for the Bayesian model and the global color distribution. Furthermore, we establish a contour-based selection mechanism to optimize the global-color distribution, which is an effective revising approach for the Bayesian model as well. To obtain an excellent object contour, we firstly intensify the object region in the source gray-scale image by a seed-based method. The final saliency map can be detected after weighting the color distribution to the Bayesian saliency map, after both of the two components are available. The contribution of this paper is that, comparing the Harris-based convex hull algorithm, the active contour can extract a more accurate and non-convex foreground. Moreover, the global color distribution can solve the saliency-scattered drawback of Bayesian model, by the mutual complementation. According to the detected results, the final saliency maps generated with considering the global color distribution and active contour are much-improved.

CenterNet Based on Diagonal Half-length and Center Angle Regression for Object Detection

  • Yuantian, Xia;XuPeng Kou;Weie Jia;Shuhan Lu;Longhe Wang;Lin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1841-1857
    • /
    • 2023
  • CenterNet, a novel object detection algorithm without anchor based on key points, regards the object as a single center point for prediction and directly regresses the object's height and width. However, because the objects have different sizes, directly regressing their height and width will make the model difficult to converge and lose the intrinsic relationship between object's width and height, thereby reducing the stability of the model and the consistency of prediction accuracy. For this problem, we proposed an algorithm based on the regression of the diagonal half-length and the center angle, which significantly compresses the solution space of the regression components and enhances the intrinsic relationship between the decoded components. First, encode the object's width and height into the diagonal half-length and the center angle, where the center angle is the angle between the diagonal and the vertical centreline. Secondly, the predicted diagonal half-length and center angle are decoded into two length components. Finally, the position of the object bounding box can be accurately obtained by combining the corresponding center point coordinates. Experiments show that, when using CenterNet as the improved baseline and resnet50 as the Backbone, the improved model achieved 81.6% and 79.7% mAP on the VOC 2007 and 2012 test sets, respectively. When using Hourglass-104 as the Backbone, the improved model achieved 43.3% mAP on the COCO 2017 test sets. Compared with CenterNet, the improved model has a faster convergence rate and significantly improved the stability and prediction accuracy.

Analysis of Internal Loading at Multiple Robotic Systems

  • Chung Jae Heon;Yi Byung-Ju;Kim Whee Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1554-1567
    • /
    • 2005
  • When multiple robotics systems with several sub-chains grasp a common object, the inherent force redundancy provides a chance of utilizing internal loading. Analysis of grasping space based internal loading is proposed in this work since this method facilitates understanding the physical meaning of internal loadings in some applications, as compared to usual operational space based approach. Investigation of the internal loading for a triple manipulator has been few as ,compared to a dual manipulator. In this paper, types of the internal loading for dual and triple manipulator systems are investigated by using the reduced row echelon method to analyze the null space of those systems. No internal loading condition is derived and several load distribution schemes are compared through simulation. Furthermore, it is shown that the proposed scheme based on grasping space is applicable to analysis of special cases such as three-fingered and three-legged robots having a point contact with the grasped object or ground.