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ABSTRACT: The knowledge of fuel load and composition is important for planning and managing the fire hazard and
risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on
the seasonal situations and are affected by the surrounding environment. Remote sensing has potential of reduction the
uncertainty in mapping fuels and offers the best approach for improving our abilities. This paper compared the results of
object-oriented classification to a pixel-based classification for fuel type map derived from Hyperion hyperspectral data
that could be enable to provide this information and allow a differentiation of material due to their typical spectra. Our
methodological approach for fuel type map is characterized by the result of the spectral mixture analysis (SMA) that can
used to model the spectral variability in multi- or hyperspectral images and to relate the results to the physical
abundance of surface constitutes represented by the spectral endmembers. Object-oriented approach was based on
segment based endmember selection, while pixel-based method used standard SMA. To validate and compare, we used

true-color high resolution orthoimagery
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1. INTRODUCTION

Wildland fuels are critical elements in many wildland
fire planning and management activities. Fire fuels are a
particular significance to natural resource managers
because unlikely weather and topography, humans can
change the available quantities of fuels (Keane et al.,
2001). Remote sensing has the potential to reduce
uncertainty when assessing fuel fuels and offers the best
approach for improving our abilities to assess spatially
and temporally varying fuel characteristics (Roberts and
Dennision, 1999).

In Korea Peninsula, the spring season climate which is
dry weather results in water deficits and ecosystems that
are highly sensitive to climate perturbations. Spring
drought coupled with the presence of shrub and forested
community makes wildfire that is one of the most serious
economic and life-threatening natural disasters in the
regions. According to the National Emergency
Management Agency statistics, about 60 percent of all
wildfire broke out in spring time with a great deal of
damage to the areas.

Fuels are defined as the physical characteristics, such as
loading (weight per unit area), size (particle diameter),
and bulk density (weight per unit volume) of the live and
dead biomass that contribute to the spread, intensity, and
severity of wildland fire (Keane et al., 2001). The main
criterion of classification is the propagation element,
divided into three major groups: grass, shrub, or ground
litter. In object-oriented classification, which is the
technique that was adopted in this work, not only the

spectral signature but also some spatial characteristics
such as shape, texture, and neighbouring object were
taken as the main classification factors (Kettig and
Landgrebe, 1976; van der Sande ef al., 2003).

In this study, we analyzed and compared the results of
object-oriented and pixel-based classification for fuel
type using Hyperion, an imaging spectrometer on the
Earth Observation 1(EO-1) satellite platform. For
classification, we used spectral mixture analysis (SMA).

2. BACKGROUND

In the most extreme conditions, such as strong winds,
high temperature and very low humidity, fire will burn
across land with very low fuel fuels. However, the effects
of fuels on fire behaviour will differ, depending on type
and structure of the vegetation, the level of moisture in
the fuel, the arrangement of the fuel, and the terrain
(Roberts et al., 2003; Rolf ef al., 2005). Therefore, there
is a clear management advantage to have an
understanding of fuel continuity across the landscape,
especially for wildfire suppression planning. Historically,
remote sensing has been more concern with mapping fire
danger. High resolution and temporal variability
imageries are usually used because of representing one of
the greatest sources of uncertainty in predicting fire
danger. In some case, fire danger is assessed using
broadband sensor such as the Advanced Very High
Resolution Radiometer (AVHRR), and Thematic Mapper
(TM), through some combination of fuel type mapping,
meteorology and ancillary geographic information

-297 -



(Chuvieco and Salas, 1996). Roberts ef al. and Dennison
et al. describe new measures of fuel properties derived
from hyperspectral system such as AVIRIS.

SMA technique assumes that the remotely sensed
surface reflectance can be modeled as the linear
combination of endmember reflectance spectra (Smith et
al., 1990). Endmember spectra (i.e., laboratory, reference,
or image pixel spectra) are selected to represent the
physical scene components of interest, but they also must
adequately explain the majority of scene spectral
variance. SMA proceeds with the formation of the
following system of equations for each pixel in the
image:

Ry = 2 fumReoms) + & and Y fo =1 o

where R, ,

at each band; £, is fraction of each endmember in
observed mixed spectrum; R, , is reflectance of each

is reflectance of observed image spectrum

endmember at each band; &, is band residual.

3. METHOD
3.1 Study Site

The study site is located in southwest part of GyeongGi-
Do, Korea. This area consists of forest, farmland and
small village. Although many species of trees are present,
only a few species dominate the landscape including pine
and oak.

3.2 Data

For our study, we used part of the Hyperion imagery
acquired at approximately 02:00 UTC on April 3, 2002.
Hyperion is a hyperspectral instrument on the Earth
Observing 1 (EO-1) spacecraft that was launched on
November 21, 2000. Hyperion imagery consists of 242
channels ranging from 356-2577nm, sampled
approximately at a 10nm sampling interval. It is part of
EO-1 platform and follows Landsat Enhanced Thematic
Mapper (ETM) in its orbits, providing nearly
simultaneous coverage. Each image contains data for a
7.65km wide (cross-track) by 185km long (along-track)
region.

3.3 Image Analysis

In order to compare the information provided the
object-oriented and pixel-based classification, all the
necessary corrections in both images were made, and the
same standardization was used but in a modified form
according to the characteristics of the methodology

(Figure 1).

3.3.1 Detection and Correction of Abnormal Pixels:
Hyperion acquires data in pushbroom mode with two
spectrometers, one in the visible and near infrared

(VNIR) range W
and another in J

the short-wave

—
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addition, there Figure 1. An overview of the methodology
are dark vertical gpproach

stripes in the

image (Han ef al., 2002). In order to correct the abnormal
pixels, we applied modified 3x3 average Filter to
atypical pixels.

3.3.2 Atmospheric correction: The Hyperion data was
radiometrically corrected to reflectance using the
FLAASH (Fast Line of sight Atmospheric Analysis of
Hyperspectral Cubes) ver. 4.2. The surface reflectance
was determined by the following equation:

1
where p is the pixel surface reflectance; p, is an average

_ 4p Bp,
L=( —pS)+(1—peS)+La @

e

surface reflectance for the pixel; S is the spherical albedo
of the atmosphere; L_is the radiance back scattered by

the atmosphere; 4 and B are coefficients that depend on
atmospheric and geometric condition but not on the
surface.

3.3.3 Standardization: The “Prometheus” system is
based mainly on the type and height of the propagation
element and it comprise the seven fuel types to be
identified. However, it is not always possible to
recognize all these classes in their exact form. Thus, for
the Hyperion image and acquisition date, the following
classes were used:

Type 1: no vegetation (bare soil > 60%, impervious > 60%,
water/shadow > 60%)

Type 2: low shrubs or agricultural land (NPV < 20%,
agricultural land > 30%)

Type 3: medium dead surface fuel (NPV > 30%)

Type 4: high dead surface fuel and broadleaved tree (NPV>
60%)

Type 5: Coniferous forest (GV > 60%)

3.3.4 Pixel-based Classification: SMA was used to map
green vegetation (GV), non-photosynthetic vegetation
(dead berbaceous plants, litter, and wood), bare soil,
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shadow, agricultural land, and impervious (building,
asphalt road, etc.). In SMA, The endmembers were
selected from pure pixels with reference to the field
spectrometer (GER3700) and high resolution
orthoimagery and based on whether they are physically
reasonable (fractions are between 0% and 100%) and
meet criteria based on the overall fit and residuals.

3.3.5 Object-oriented Classification: The object-
oriented approach first involved the segmentation of
image data into objects. The image was segmented into
object primitives or segments using eCognition. The
segmentation of the image into object primitives was
influenced by three parameters: scale, color, and shape.
SMA method was also used for fuel types.

4. RESULTS/DISCUSSION
4.1 Detection and Correction of Abnormal pixels

There are many possible causes for the abnormal pixels

including detector
failure, errors during
data transfer, and

improper data correction.
We  corrected  the
abnormal pixels and
removed atypical bands.

Finally,

(a) Before

(b) After
we used 150 pjoure 2. Abnormal pixel cotrection
bands of 242 bands.

4.2 Pixel-based Classification

Hyperion results exhibited recognizable pattern of GV,
NPV, shadow, soil, agricultural land, and impervious
(Figure 3). In this figure, areas mapped as red (NPV) are
considered the highest fire danger because of an
abundance of senesced plant material. The fuel type map
in Figure 4 was obtained using SMA result (Figure 3).
All main classes were well recognized. However, a part
of type2 class was poorly classified because agricultural
land had similar to NPV in the spring season.

Figure 3. False color
composite(pixel) showing
fraction images for
NPV(red), GV(green), and
soil(blue)

Flgure 4. Classification result
showing (pixel)

4.3 Object-oriented classification

The segmentation image in Figure 5 was produced
based on optimal parameters throughout repetitive try
(scale: 12; shape: 0.2; compactness: 0.7).

(a) Before (b) After
Figure 5. Segmentation image showing

The result of SMA also showed comparatively good
performance (Figure 6), but the fraction of SMAxpy was
relatively overestimated comparing the pixel-based SMA
method. The fuel type map in Figure 7 was also obtained
using SMA result (Figure 6). The fuel type map derived
pixel-based SMA result showed the salt and pepper effect
but the fuel type map derived object-oriented SMA result
showed spectral homogenous regions.

Figure 6. False color Figure 7. Classification result
composite(object) showing showing (object)

fraction images for

NPV(red), GV(green), and

soil(blue)

4.4 Validation

The results of object-oriented and pixel-based
classifications were validated by comparing the true-
color high resolution orthoimagery. From the results of

Table 1. Summary of confusion matrices for the accuracy of
object-oriented and pixel-based classifications
Object-oriented classification Pixel-based classification

Producer(%) | User(%) Producer(%) | User(%)
Typel 93.18 100.00 93.18 98.80
Type2 96.94 91.35 73.47 82.76
Type3 38.18 77.78 47.22 51.52
Typed 91.78 49.63 70.67 49.07
Type5 91.74 97.09 88.07 95.05

Overall accuracy = 80.75% Overall accuracy = 74.06%

Khat = 76.11% Knat = 67.58%
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the confusion matrices, the overall accuracy of the
object-oriented classification was better than for the
pixel-based classification, 80.75% versus 74.06%
respectively (Table 1). This was also the case for the Kpy.
The class that had poor accuracy in both classifications
were Type3 and Type4. This is possibly due to
ambiguous divisions for each class.

5. CONCLUSION

Hyperspectral data such as Hyperion imagery provides a
variety of wildfire fuel properties including in-direct
measures of live fuel moisture and green live biomass,
improved separation of GV, NPV and substrate and
improved fuel type mapping. In this paper, we analyzed
and compared object-oriented and pixel-based
classification methods for fuel type mapping. The object-
oriented method use in this paper provided results with
an acceptable accuracy better than the pixel-based
classifications. The difference between the classifications
is obvious. Even though pixel-based classification is still
successful, it does misclassify pixels, particularly in fuel
types that are spectrally heterogeneous. Object-oriented
classification appeared to overcome some of the
problems encountered using- pixel-based method. To
improve the accuracies of the object-oriented
classification, further work refining the process is
continuing.
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