• Title/Summary/Keyword: object transport system

Search Result 119, Processing Time 0.026 seconds

Methodology of Calibration for Falling Objects Accident-Risk-Zone Approach Detection Algorithm at Port Considering GPS Errors (GPS 오차를 고려한 항만 내 낙하물 사고위험 알고리즘 보정 방법론 개발)

  • Son, Seung-Oh;Kim, Hyeonseo;Park, Juneyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.61-73
    • /
    • 2020
  • Real-time location-sensing technology using location information collected from IoT devices is being applied for safety management purposes in many industries, such as ports. On the other hand, positional error is always present owing to the characteristics of GPS. Therefore, accident-risk detection algorithms must consider positional error. This paper proposes an methodology of calibration for falling object accident-risk-zone approach detection algorithm considering GPS errors. A probability density function was estimated, with positional error data collected from IoT devices as a probability variable. As a result of the verification, the algorithm showed a detection accuracy of 93% and 77%. Overall, the analysis results derived according to the GPS error level will be an important criterion for upgrading algorithms and real-time risk managements in the future.

Design and Implementation of Space Time Point for Real-time Public Transportation Route Guidance (실시간 대중교통 경로안내를 위한 Space Time Point 모델의 설계와 구현)

  • Kim, Soo-Ho;Joo, Yong-Jin;Park, Soo-Hong
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.83-93
    • /
    • 2012
  • Recent environmental concerns have made interest in environment-friendly transportation means such as walking, biking, and public transportation. However, since it is difficult to move long distance by walking or biking, their scope of application is rather limited. On the other hand, public transportation can solve traffic congestion, a recent social issue, though its usability may depend on its time schedule. Currently available information services on public transportation in the Web do not reflect well such traits of the public transportation; thus, in some cases, they may provide wrong information to end users. To solve such problems and provide information based on timetable of public transportations, this paper proposes a STP(Space Time Point) data model. Unlike existing space-time data models, this model recognizes the bottommost element of an object as a point and structures these points in hierarchical way to define an object. In particular, It can make it possible to implement a variety of dynamic spatial objects changing object information according to time. An objective of this study is to design a STP model for bus and subway based on timetables of public transportation in Daejeon area and builds a system to provide path navigation. With the designed navigation function, a path from the Daejeon National Cemetery to Hannam University was searched by time slot. The result showed that the system provided different paths by time, as the system guided different paths when bus operation was limited in midnight. As existing data model could not provide such results, it is confirmed that the system can provide path navigation based on real-time traffic information. It is expected that based on such functionality, it is possible to provide additional functionalities by applying diverse data models such as real-time transport information or traffic history information.

Practical and Verifiable C++ Dynamic Cast for Hard Real-Time Systems

  • Dechev, Damian;Mahapatra, Rabi;Stroustrup, Bjarne
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.375-393
    • /
    • 2008
  • The dynamic cast operation allows flexibility in the design and use of data management facilities in object-oriented programs. Dynamic cast has an important role in the implementation of the Data Management Services (DMS) of the Mission Data System Project (MDS), the Jet Propulsion Laboratory's experimental work for providing a state-based and goal-oriented unified architecture for testing and development of mission software. DMS is responsible for the storage and transport of control and scientific data in a remote autonomous spacecraft. Like similar operators in other languages, the C++ dynamic cast operator does not provide the timing guarantees needed for hard real-time embedded systems. In a recent study, Gibbs and Stroustrup (G&S) devised a dynamic cast implementation strategy that guarantees fast constant-time performance. This paper presents the definition and application of a cosimulation framework to formally verify and evaluate the G&S fast dynamic casting scheme and its applicability in the Mission Data System DMS application. We describe the systematic process of model-based simulation and analysis that has led to performance improvement of the G&S algorithm's heuristics by about a factor of 2. In this work we introduce and apply a library for extracting semantic information from C++ source code that helps us deliver a practical and verifiable implementation of the fast dynamic casting algorithm.

On the validation of ATHLET 3-D features for the simulation of multidimensional flows in horizontal geometries under single-phase subcooled conditions

  • Diaz-Pescador, E.;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3567-3579
    • /
    • 2022
  • This paper provides an assessment of fluid transport and mixing processes inside the primary circuit of the test facility ROCOM through the numerical simulation of Test 2.1 with the system code ATHLET. The experiment represents an asymmetric injection of cold and non-borated water into the reactor coolant system (RCS) of a pressurized water reactor (PWR) to restore core cooling, an emergency procedure which may subsequently trigger a core re-criticality. The injection takes place at low velocity under single-phase subcooled conditions and presents a major challenge for the simulation in lumped parameter codes, due to multidimensional effects in horizontal piping and vessel arising from density gradients and gravity forces. Aiming at further validating ATHLET 3-D capabilities against horizontal geometries, the experiment conditions are applied to a ROCOM model, which includes a newly developed horizontal pipe object to enhance code prediction inside coolant loops. The obtained results show code strong simulation capabilities to represent multidimensional flows. Enhanced prediction is observed at the vessel inlet compared to traditional 1-D approach, whereas mixing overprediction from the descending denser plume is observed at the upper-half downcomer region, which leads to eventual deviations at the core inlet.

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.

Development of Customer Satisfaction Model of Providing VMS Traffic Information (VMS 교통정보 제공에 따른 이용자 만족도 모형 개발)

  • Hong, Ji-Yeon;Lee, Soo-Beom;Yeon, Bok-Mo;Lim, Joon-Bum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • At present, an intelligent transport system (ITS) is being actively introduced as an alternative plan to solve various transport problems, and a traffic information provision service, a field of ITS, is being provided to users through diverse media. However, the evaluation of how useful the traffic information provided to the road users is limited to a simple questionnaire, and the systematic evaluation about what factors affect the usefulness of traffic information has not been realized. Therefore, it is impossible to calculate user convenience occurring due to traffic information, This paper aimed to develop an index to evaluate user satisfaction levels with traffic information and develop a user satisfaction level model. A result of establishing a user satisfaction level model by executing a questionnaire survey for the analysis object of variable message sign (VMS), a representative information provision medium, showed that 'desire satisfaction', 'trust', 'understanding', and 'efficiency' have an effect. Of them, the 'understanding' showed the highest level, so it was seen that, in case of VMS, how easily the character, figure, expression, etc. provided in the information was understood by users has the biggest effect on the satisfaction level of the information. The next levels of effects on the satisfaction was in the order of 'user trust', 'efficiency', and 'desire satisfaction'.

  • PDF

A Study on the Utilization Improvements by Function Analysis of the Construction CALS (건설 CALS 시스템의 기능분석을 통한 활용성 개선방안 연구)

  • Kang, LeenSeok;Han, DongHo;Park, NamJin;Moon, HyounSeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.441-450
    • /
    • 2011
  • Recent construction projects consist of large and complex facilities, which project management information system (PMIS) is used for managing construction cost and schedule. The ministry of land, transport and maritime affairs (MLTM) is using a continuous acquisition and life-cycle support (CALS) system for managing the public construction projects. This study attempts to survey some problems of the CALS system in practical application, and then suggests the new functions to improve practical application of the CALS system. All functions in each menu were analyzed in the practical application aspect. All projects ordered from MLTM should use the CALS system as a PMIS, but the practical application is limited in partial functions and special working group. And the utilization of system is focused on simple tasks and report process. One of main reason is that the system is using numerical data rather than graphical data. This study suggests new functions and a visualized management method that can improve the practical applicability using a 4D object in each current functions.

The Analysis on Container Railroad Transit Capacity in Busan Port (부산항 컨테이너화물의 철송 능력 분석)

  • Hur, Yun-Su;Lee, Jae-Won
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.585-591
    • /
    • 2003
  • Recently, South korea is driving forward the strategy concerning of the logistics center of northeast asia aggressively on the purpose of promoting Busan port & Gwangyang port to the hub-port of northeast asia, In that situation, it is significant that the meaning, construction connecting between south and north railway. Namely, That is the reason why Busan port is satisfied with the combined transport system of not only marine transportation but also railway transportation completely, However, the research and policy is only focused on the connection of north-south railway so far. The ability of Buans railway equipment as the actual role of origin-destination point of TKR(Trans Korean Railway), was not reviewed. Therefore, this research is shown the problem and reality of the railway transport concerning the centralization of Busan port, and the capacity of Busan port railway facility regarding the increase of future container quantity is reviewed and analyzed Moreover, the object, shown the importance of facility expansion such as Gungbu Trans Express between Daegu and Busan and the improvement scheme for railway transportation activation through the analysis of society cost and the logistics cost of the ability of railway facility, is set up.

A DEVS-based Modeling & Simulation Methodology of Enabling Node Mobility for Ad Hoc Network (노드 이동성을 고려한 애드 혹 네트워크의 이산 사건 시스템 기반 모델링 및 시뮬레이션 방법론)

  • Song, Sang-Bok;Lee, Kyou-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.127-136
    • /
    • 2009
  • Modeling and Simulation, especially in mobile ad hoc network(MANET), are the most effective way to analyze performance or optimize system parameters without establishing real network environment. Focusing mainly on overall network behaviors in MANET concerns dynamics of network transport operations, which can efficiently be characterized with event based system states rather than execution details of protocols. We thus consider the network as a discrete event system to analyze dynamics of network transport performance. Zeigler's set-theoretic DEVS(Discrete Event Systems Specification) formalism can support specification of a discrete event system in hierarchical, modular manner. The DEVSim++ simulation environment can not only provide a rigorous modeling methodology based on the DEVS formalism but also support modelers to develop discrete event models using the hierarchical composition methodology in object-orientation. This environment however hardly supports to specify connection paths of network nodes, which are continuously altered due to mobility of nodes. This paper proposes a DEVS-based modeling and simulation methodology of enabling node mobility, and develops DEVS models for the mobile ad hoc network. We also simulate developed models with the DEVSim++ engine to verify the proposal.

Investigation of Drop Test Method for Simulation of Low Gravity Environment (저중력 환경 모사를 위한 낙하 시험 방법 연구)

  • Baek, Seungwhan;Yu, Isang;Shin, Jaehyun;Park, Kwangkun;Jung, Youngsuk;Cho, Kiejoo;Oh, Seunghyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • Understanding the liquid propellant transport phenomena in low gravity is essential for developing Korea Space Launch Vehicle (KSLV) upper-stage for the diversity of space missions. A low-gravity environment can be simulated via the free-fall method on the ground; however, the air drag is inevitable. To reduce air resistance during free fall, air-drag shield is usually adopted. In this study, the free-fall method was performed with an air-drag shield from a 7-m height tower. The acceleration of a falling object was measured and analyzed. Low gravity below 0.01 g was achieved during 1.2-s free fall with the air-drag shield. The minimum gravitational acceleration value at 1.2-s after free fall was ±0.005 g, which is comparable to the value obtained from Bremen drop tower experiments, ±0.002 g. A prolonged free-fall duration may enhance the low-gravity quality during the drop tower experiments.