• Title/Summary/Keyword: object tracking

Search Result 1,487, Processing Time 0.023 seconds

Object Tracking using Color Histogram and CNN Model (컬러 히스토그램과 CNN 모델을 이용한 객체 추적)

  • Park, Sung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • In this paper, we propose an object tracking algorithm based on color histogram and convolutional neural network model. In order to increase the tracking accuracy, we synthesize generic object tracking using regression network algorithm which is one of the convolutional neural network model-based tracking algorithms and a mean-shift tracking algorithm which is a color histogram-based algorithm. Both algorithms are classified through support vector machine and designed to select an algorithm with higher tracking accuracy. The mean-shift tracking algorithm tends to move the bounding box to a large range when the object tracking fails, thus we improve the accuracy by limiting the movement distance of the bounding box. Also, we improve the performance by initializing the tracking start positions of the two algorithms based on the average brightness and the histogram similarity. As a result, the overall accuracy of the proposed algorithm is 1.6% better than the existing generic object tracking using regression network algorithm.

Local and Global Information Exchange for Enhancing Object Detection and Tracking

  • Lee, Jin-Seok;Cho, Shung-Han;Oh, Seong-Jun;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1400-1420
    • /
    • 2012
  • Object detection and tracking using visual sensors is a critical component of surveillance systems, which presents many challenges. This paper addresses the enhancement of object detection and tracking via the combination of multiple visual sensors. The enhancement method we introduce compensates for missed object detection based on the partial detection of objects by multiple visual sensors. When one detects an object or more visual sensors, the detected object's local positions transformed into a global object position. Local and global information exchange allows a missed local object's position to recover. However, the exchange of the information may degrade the detection and tracking performance by incorrectly recovering the local object position, which propagated by false object detection. Furthermore, local object positions corresponding to an identical object can transformed into nonequivalent global object positions because of detection uncertainty such as shadows or other artifacts. We improved the performance by preventing the propagation of false object detection. In addition, we present an evaluation method for the final global object position. The proposed method analyzed and evaluated using case studies.

Human Tracking Based On Context Awareness In Outdoor Environment

  • Binh, Nguyen Thanh;Khare, Ashish;Thanh, Nguyen Chi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3104-3120
    • /
    • 2017
  • The intelligent monitoring system has been successfully applied in many fields such as: monitoring of production lines, transportation, etc. Smart surveillance systems have been developed and proven effective in some specific areas such as monitoring of human activity, traffic, etc. Most of critical application monitoring systems involve object tracking as one of the key steps. However, task of tracking of moving object is not easy. In this paper, the authors propose a method to implement human object tracking in outdoor environment based on human features in shearlet domain. The proposed method uses shearlet transform which combines the human features with context-sensitiveness in order to improve the accuracy of human tracking. The proposed algorithm not only improves the edge accuracy, but also reduces wrong positions of the object between the frames. The authors validated the proposed method by calculating Euclidean distance and Mahalanobis distance values between centre of actual object and centre of tracked object, and it has been found that the proposed method gives better result than the other recent available methods.

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF

Study on Underwater Object Tracking Based on Real-Time Recurrent Regression Networks Using Multi-beam Sonar Images (실시간 순환 신경망 기반의 멀티빔 소나 이미지를 이용한 수중 물체의 추적에 관한 연구)

  • Lee, Eon-ho;Lee, Yeongjun;Choi, Jinwoo;Lee, Sejin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • This research is a case study of underwater object tracking based on real-time recurrent regression networks (Re3). Re3 has the concept of generic object tracking. Because of these characteristics, it is very effective to apply this model to unclear underwater sonar images. The model also an pursues object tracking method, thus it solves the problem of calculating load that may be limited when object detection models are used, unlike the tracking models. The model is also highly intuitive, so it has excellent continuity of tracking even if the object being tracked temporarily becomes partially occluded or faded. There are 4 types of the dataset using multi-beam sonar images: including (a) dummy object floated at the testbed; (b) dummy object settled at the bottom of the sea; (c) tire object settled at the bottom of the testbed; (d) multi-objects settled at the bottom of the testbed. For this study, the experiments were conducted to obtain underwater sonar images from the sea and underwater testbed, and the validity of using noisy underwater sonar images was tested to be able to track objects robustly.

Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter (배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법)

  • Lim, Su-chang;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1537-1545
    • /
    • 2016
  • In real time video sequence, object segmentation and tracking method are actively applied in various application tasks, such as surveillance system, mobile robots, augmented reality. This paper propose a robust object tracking method. The background models are constructed by learning the initial part of each video sequences. After that, the moving objects are detected via object segmentation by using background subtraction method. The region of detected objects are continuously tracked by using the HSV color histogram with particle filter. The proposed segmentation method is superior to average background model in term of moving object detection. In addition, the proposed tracking method provide a continuous tracking result even in the case that multiple objects are existed with similar color, and severe occlusion are occurred with multiple objects. The experiment results provided with 85.9 % of average object overlapping rate and 96.3% of average object tracking rate using two video sequences.

Moving Object Tracking Scheme based on Polynomial Regression Prediction in Sparse Sensor Networks (저밀도 센서 네트워크 환경에서 다항 회귀 예측 기반 이동 객체 추적 기법)

  • Hwang, Dong-Gyo;Park, Hyuk;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.44-54
    • /
    • 2012
  • In wireless sensor networks, a moving object tracking scheme is one of core technologies for real applications such as environment monitering and enemy moving tracking in military areas. However, no works have been carried out on processing the failure of object tracking in sparse sensor networks with holes. Therefore, the energy consumption in the existing schemes significantly increases due to plenty of failures of moving object tracking. To overcome this problem, we propose a novel moving object tracking scheme based on polynomial regression prediction in sparse sensor networks. The proposed scheme activates the minimum sensor nodes by predicting the trajectory of an object based on polynomial regression analysis. Moreover, in the case of the failure of moving object tracking, it just activates only the boundary nodes of a hole for failure recovery. By doing so, the proposed scheme reduces the energy consumption and ensures the high accuracy for object tracking in the sensor network with holes. To show the superiority of our proposed scheme, we compare it with the existing scheme. Our experimental results show that our proposed scheme reduces about 47% energy consumption for object tracking over the existing scheme and achieves about 91% accuracy of object tracking even in sensor networks with holes.

Tracking of Moving Object using Fuzzy Prediction (퍼지 예측을 이용한 이동물체 추적)

  • Lim, Yong-Ho;Baek, Joong-Hwan;Hwang, Soo-Chan
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.26-36
    • /
    • 2001
  • One of the most important problems in time-varying image sequences is the automatic target tracking. This paper proposes a position prediction and tracking technique of moving object using fuzzy prediction. First, the object is segmented from background of the image using accumulative difference image technique. Then centroid of the segmented object is extracted by using the centroid method, and we propose to apply variable size searching window to the object in order to increase the tracking performance. Also, non-linear prediction is required for efficient object tracking. Therefore, in this paper, fuzzy prediction method is proposed for predicting the location of the moving object at next frame. An experimental result shows that the proposed fuzzy prediction system tracks the moving object in stable under various conditions.

  • PDF

Vision-Based Indoor Object Tracking Using Mean-Shift Algorithm (평균 이동 알고리즘을 이용한 영상기반 실내 물체 추적)

  • Kim Jong-Hun;Cho Kyeum-Rae;Lee Dae-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.746-751
    • /
    • 2006
  • In this paper, we present tracking algorithm for the indoor moving object. We research passive method using a camera and image processing. It had been researched to use dynamic based estimators, such as Kalman Filter, Extended Kalman Filter and Particle Filter for tracking moving object. These algorithm have a good performance on real-time tracking, but they have a limit. If the shape of object is changed or object is located on complex background, they will fail to track them. This problem will need the complicated image processing algorithm. Finally, a large algorithm is made from integration of dynamic based estimator and image processing algorithm. For eliminating this inefficiency problem, image based estimator, Mean-shift Algorithm is suggested. This algorithm is implemented by color histogram. In other words, it decide coordinate of object's center from using probability density of histogram in image. Although shape is changed, this is not disturbed by complex background and can track object. This paper shows the results in real camera system, and decides 3D coordinate using the data from mean-shift algorithm and relationship of real frame and camera frame.