• Title/Summary/Keyword: object tracking

Search Result 1,499, Processing Time 0.026 seconds

실내 환경에서 효율적인 위치 추적을 위한 알고리즘에 관한 연구 (A Study on Algorithm for Efficient Location Tracking in Indoor Environment)

  • 전현식;우성현;이호응;류인선;윤성근;박현주
    • Journal of Information Technology Applications and Management
    • /
    • 제13권3호
    • /
    • pp.59-74
    • /
    • 2006
  • According to developing Wireless Communication, not only a location based service at the outside but also a location based service at the inside was more increased socially. This paper proposes the efficient algorithm to locate a transfer object in frequent change of indoor environment using indoor location tracking system we develop ourself. Proposing algorithm in this paper can locate a transfer object using the Fingerprint, one of the Location Tracking techniques which are used in general to minimize error data between Location Tracking System and Fingerprint, using this way that corrects location data as KF apply to result data can improve accuracy of a transfer object. At last we are going to compare and analyze existing typical triangulation with proposed Indoor location tracking system to demonstrate algorithm efficiency for proposed Indoor location tracking system.

  • PDF

칼만필터를 이용한 3-D 이동물체의 강건한 시각추적 (Robust Visual Tracking for 3-D Moving Object using Kalman Filter)

  • 조지승;정병묵
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1055-1058
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is the use of different model (CAD model etc.) known a priori. Also fusion or multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Voting-based fusion of cues is adapted. In voting. a very simple or no model is used for fusion. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters. namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF

검출기 융합에 기반을 둔 확률가정밀도 (PHD) 필터를 적용한 다중 객체 추적 방법 (Fusion of Local and Global Detectors for PHD Filter-Based Multi-Object Tracking)

  • 윤주홍;황영배;최병호;윤국진
    • 제어로봇시스템학회논문지
    • /
    • 제22권9호
    • /
    • pp.773-777
    • /
    • 2016
  • In this paper, a novel multi-object tracking method to track an unknown number of objects is proposed. To handle multiple object states and uncertain observations efficiently, a probability hypothesis density (PHD) filter is adopted and modified. The PHD filter is capable of reducing false positives, managing object appearances and disappearances, and estimating the multiple object trajectories in a unified framework. Although the PHD filter is robust in cluttered environments, it is vulnerable to false negatives. For this reason, we propose to exploit local observations in an RFS of the observation model. Each local observation is generated by using an online trained object detector. The main purpose of the local observation is to deal with false negatives in the PHD filtering procedure. The experimental results demonstrated that the proposed method robustly tracked multiple objects under practical situations.

이동 물체 추적을 위한 경계선 추출 (Boundary Line Extract for Moving Object Tracking)

  • 김태식;이주신
    • 전자공학회논문지T
    • /
    • 제35T권2호
    • /
    • pp.28-34
    • /
    • 1998
  • 본 논문에서는 3차원 영상 처리 시스템을 이용한 이동 물체 추적을 위한 경계선 추출 알고리즘을 제시하였다. 이동 물체의 검출은 입력 영상에서 차 영상 기법을 이용하였고, 이동 물체 검출을 위한 검출 윈도우는 처리시간을 줄이기 위하여 4개의 예상영역과 물체영역으로 구성하였으며, 크기는 이동 물체의 크기와 중심 좌표에 대한 예측 계수에 의해 정하였고, 추적 카메라는 직류 모터에 의해 X, Y 방향으로 이동하도록 하였다. 모형 자동차를 이용하여 알고리즘을 수행한 결과, 최대 추적 시간은 2초였고, 추적 에러는 물체 크기의 6% 이하였다.

  • PDF

확률적 표본화와 배경 차분을 이용한 비디오 객체 추적 (Visual Tracking Using Monte Carlo Sampling and Background Subtraction)

  • 김현철;백준기
    • 대한전자공학회논문지SP
    • /
    • 제48권5호
    • /
    • pp.16-22
    • /
    • 2011
  • 본 논문에서는 배경 차분에 의해 객체를 검출하고 확률적으로 표본화된 입자 필터링(particle filtering)기법을 사용한 다중객체 추적 기법을 제안한다. 확률적으로 표본화된 입자들을 사용하여 다중 객체에 독립적으로 적용할 때 발생하는 계산 복잡도(computational complexity)를 감소시키는 동시에 안정적인 추적을 가능하게 하였다. 객체의 색상정보를 사용한 히스토그램 분포에 의한 관측 모델(observation model)을 구성하고 객체의 움직임 정보를 위해 동적 모델을 공식화하여 영상을 해석하였다. 전체적인 추적 시스템은 베이시언 최대 우도 기법(Bayesian maximum likelihood method)을 근간으로 하되, 입자 필터링을 객체 추적에 적용하여 실용적인 현실 객체 추적 상황에도 강건하게 대처할 수 있음을 실험을 통해서 증명하였다.

Efficient Tracking of a Moving Object using Optimal Representative Blocks

  • Kim, Wan-Cheol;Hwang, Cheol-Ho;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.495-502
    • /
    • 2003
  • This paper focuses on the implementation of an efficient tracking method of a moving object using optimal representative blocks by way of a pan-tilt camera. The key idea is derived from the fact that when the image size of a moving object is shrunk in an image frame according to the distance between the mobile robot camera and the object in motion, the tracking performance of a moving object can be improved by reducing the size of representative blocks according to the object image size. Motion estimations using Edge Detection (ED) and Block-Matching Algorithm (BMA) are regularly employed to track objects by vision sensors. However, these methods often neglect the real-time vision data since these schemes suffer from heavy computational load. In this paper, a representative block able to significantly reduce the amount of data to be computed, is defined and optimized by changing the size of representative blocks according to the size of the object in the image frame in order to improve tracking performance. The proposed algorithm is verified experimentally by using a two degree-of- freedom active camera mounted on a mobile robot.

BBME와 DD를 통합한 움직이는 카메라로부터의 이동물체 추적 시스템 (A Moving Object Tracking System from a Moving Camera by Integration of Motion Estimation and Double Difference)

  • 설성욱;송진기;장지혜;이철헌;남기곤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권2호
    • /
    • pp.173-181
    • /
    • 2004
  • 본 논문에서는 움직이는 카메라로부터 획득한 연속영상에서 이동물체를 자동으로 검출하고 추적하는 시스템을 제안한다. 제안된 방법은 크게 이동물체 검출과 추적과정으로 나뉘어진다. 이동물체는 BBME(block-based motion estimation)와 DD(double difference)를 통합한 방법을 이용하여 검출된다. 검출된 이동물체는 히스토그램 백 프로젝션을 통하여 분할되며, 히스토그램 인터섹션과 XY-프로젝션을 사용하여 대상물체를 정합하고 추적된다. 본 논문에서는 컴퓨터 모의실험을 통하여 제안된 방법이 움직이는 카메라로부터 획득된 영상에서 이동물체를 검출하고 큰 오차 없이 추적함을 보였다.

다중 이미지에서 단일 이미지 검출 및 추적 시스템 구현 (Implementation of a Single Image Detection and Tracking System in Multiple Images)

  • 최재학;박인호;김성윤;이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.78-81
    • /
    • 2017
  • Augmented Reality(AR) is the core technology of the future knowledge service industry. It is expected to be used in various fields such as medical, education, entertainment etc. Briefly, augmented reality technology is a technique in which a mapped virtual object is augmented when a real-world object is viewed through a device after mapping a real-world object and a virtual object. In this paper, we implemented object detection and tracking system, which is a key technology of augmented reality. To speed up the object tracking, the ORB algorithm, which is a lightweight algorithm compared to the detection algorithm, is applied. In addition, KNN classifier, which is a machine learning algorithm, was applied to detect a single object by learning multiple images.

  • PDF

드론 영상을 이용한 딥러닝 기반 회전 교차로 교통 분석 시스템 (Deep Learning-Based Roundabout Traffic Analysis System Using Unmanned Aerial Vehicle Videos)

  • 이장훈;황윤호;권희정;최지원;이종택
    • 대한임베디드공학회논문지
    • /
    • 제18권3호
    • /
    • pp.125-132
    • /
    • 2023
  • Roundabouts have strengths in traffic flow and safety but can present difficulties for inexperienced drivers. Demand to acquire and analyze drone images has increased to enhance a traffic environment allowing drivers to deal with roundabouts easily. In this paper, we propose a roundabout traffic analysis system that detects, tracks, and analyzes vehicles using a deep learning-based object detection model (YOLOv7) in drone images. About 3600 images for object detection model learning and testing were extracted and labeled from 1 hour of drone video. Through training diverse conditions and evaluating the performance of object detection models, we achieved an average precision (AP) of up to 97.2%. In addition, we utilized SORT (Simple Online and Realtime Tracking) and OC-SORT (Observation-Centric SORT), a real-time object tracking algorithm, which resulted in an average MOTA (Multiple Object Tracking Accuracy) of up to 89.2%. By implementing a method for measuring roundabout entry speed, we achieved an accuracy of 94.5%.

색상과 채도의 적응적 조합을 이용한 개선된 Mean-Shift 추적 (Improved Mean-Shift Tracking using Adoptive Mixture of Hue and Saturation)

  • 박한동;오정수
    • 한국정보통신학회논문지
    • /
    • 제19권10호
    • /
    • pp.2417-2422
    • /
    • 2015
  • 색상을 이용한 Mean-Shift 추적 알고리즘은 배경이 객체와 유사한 색상을 가질 때 객체 추적을 실패하는 문제가 있다. 본 논문은 색상 대신 새로운 조합 데이터 이용해 개선된 Mean-Shift 추적 알고리즘을 제안하고 있다. 새로운 데이터는 서로의 상관도가 낮은 색상과 채도의 적응적인 조합으로 생성된다. 즉, 제안된 알고리즘은 객체와 배경을 잘 구분되는 주 색요소와 그렇지 않은 부 색요소 선택하고, 주 색요소와 부 색요소의 상위 4 비트를 각각 조합 데이터의 상위 4비트와 하위 4 비트에 할당한다. 제안된 알고리즘은 배경이 객체와 유사한 색상을 갖는 추적 환경에서도 채도를 주 색요소로 선택함에 의해 추적 오차를 최대 2.0~4.2 화소, 평균 0.49~1.82 화소를 유지하면서 적절하게 객체를 추적한다.