• Title/Summary/Keyword: object matching

Search Result 645, Processing Time 0.028 seconds

Debelppment of C++ Compiler and Programming Environment (C++컴파일러 및 프로그래밍 환경 개발)

  • Jang, Cheon-Hyeon;O, Se-Man
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.3
    • /
    • pp.831-845
    • /
    • 1997
  • In this paper,we proposed and developed a compiler and interactive programming enviroments for C++ wich is mostly worth of nitice among the object -oriented languages.To develope the compiler for C++ we took front=end/back-end model using EM virtual machine.In develpoing Front-End,we formailized C++ gram-mar with the context semsitive tokens which must be manipulated by dexical scanner and designed a AST class li-brary which is the hierarchy of AST node class and well defined interface among them,In develpoing Bacik-End,we proposed model for three major components :code oprtimizer,code generator and run-time enviroments.We emphasized the retargatable back-end which can be systrmatically reconfigured to genrate code for a variety of distinct target computers.We also developed terr pattern matching algorithm and implemented target code gen-erator which produce SPARC code.We also proposed the theroy and model for construction interative pro-gramming enviroments. To represent language features we adopt AST as internal reprsentation and propose uncremental analysis algorithm and viseal digrams.We also studied unparsing scheme, visual diagram,graphical user interface to generate interactive environments automatically Results of our resarch will be very useful for developing a complier and programming environments, and also can be used in compilers for parallel and distributed enviroments.

  • PDF

Single-Camera Micro-Stereo 4D-PTV (단일카메라 마이크로 스테레오 4D-PTV)

  • Doh, Deog-Hee;Cho, Young-Beom;Lee, Jae-Min;Kim, Dong-Hyuk;Jo, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1087-1092
    • /
    • 2010
  • A micro 3D-PTV system has been constructed using a single camera system. Two viewing holes were created behind the object lens of the microscopic system to construct a stereoscopic viewing image. A hybrid recursive PTV algorithm was used. A concept of epipolar line was adopted to eliminate many spurious candidates. Three-dimensional velocity vector fields were obtained by calculating the three-dimensional displacements of particles that were identified as being identical. The system consists of a laser light source (Ar-ion, 500 mW), one high-definition camera ($1028{\times}1024$ pixels, 500 fps), a circular plate with two viewing holes, and a host computer. The performance of the developed algorithm was tested using artificial images. The characteristic of the vector recovery ratio was investigated for the particle numbers. A micro backward-facing step channel ($H{\times}h{\times}W:\;36{\mu}m{\times}70{\mu}m{\times}3000{\mu}m$) was measured using the developed measurement system. The results were in good qualitative agreement with other results.

A Euclidean Reconstruction of 3D Face Data Using a One-Shot Absolutely Coded Pattern (단일 투사 절대 코드 패턴을 이용한 3차원 얼굴 데이터의 유클리디안 복원)

  • Kim, Byoung-Woo;Yu, Sun-Jin;Lee, Sang-Youn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.133-140
    • /
    • 2005
  • This paper presents a rapid face shape acquisition system. The system is composed of two cameras and one projector. The technique works by projecting a pattern on the object and capturing two images with two cameras. We use a 'one shot' system which provides 3D data acquired by single image per camera. The system is good for rapid data acquisition as our purpose. We use the 'absolutely coded pattern' using the hue and saturation of pattern lines. In this 'absolutely coded pattern' all patterns have absolute identification numbers. We solve the correspondence problem between the two images by using epipolar geometry and absolute identification numbers. In comparison to the 'relatively coded pattern' which uses relative identification numbers, the 'absolutely coded pattern' helps obtain rapid 3D data by one to one point matching on an epipolar line. Because we use two cameras, we obtain two images which have similar hue and saturation. This enables us to have the same absolute identification numbers in both images, and we can use the absolutely coded pattern for solving the correspondence problem. The proposed technique is applied to face data and the total time for shape acquisition is estimated.

Localizing Head and Shoulder Line Using Statistical Learning (통계학적 학습을 이용한 머리와 어깨선의 위치 찾기)

  • Kwon, Mu-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.141-149
    • /
    • 2007
  • Associating the shoulder line with head location of the human body is useful in verifying, localizing and tracking persons in an image. Since the head line and the shoulder line, what we call ${\Omega}$-shape, move together in a consistent way within a limited range of deformation, we can build a statistical shape model using Active Shape Model (ASM). However, when the conventional ASM is applied to ${\Omega}$-shape fitting, it is very sensitive to background edges and clutter because it relies only on the local edge or gradient. Even though appearance is a good alternative feature for matching the target object to image, it is difficult to learn the appearance of the ${\Omega}$-shape because of the significant difference between people's skin, hair and clothes, and because appearance does not remain the same throughout the entire video. Therefore, instead of teaming appearance or updating appearance as it changes, we model the discriminative appearance where each pixel is classified into head, torso and background classes, and update the classifier to obtain the appropriate discriminative appearance in the current frame. Accordingly, we make use of two features in fitting ${\Omega}$-shape, edge gradient which is used for localization, and discriminative appearance which contributes to stability of the tracker. The simulation results show that the proposed method is very robust to pose change, occlusion, and illumination change in tracking the head and shoulder line of people. Another advantage is that the proposed method operates in real time.

A Query Result Integrity Assurance Scheme Using an Order-preserving Encryption Scheme in the Database Outsourcing Environment (데이터베이스 아웃소싱 환경에서 순서 보존 암호화 기법을 이용한 질의 결과 무결성 검증 기법)

  • Jang, Miyoung;Chang, Jae Woo
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • Recently, research on database encryption for data protection and query result authentication methods has been performed more actively in the database outsourcing environment. Existing database encryption schemes are vulnerable to order matching and counting attack of intruders who have background knowledge of the original database domain. Existing query result integrity auditing methods suffer from the transmission overhead of verification object. To resolve these problems, we propose a group-order preserving encryption index and a query result authentication method based on the encryption index. Our group-order preserving encryption index groups the original data for data encryption and support query processing without data decryption. We generate group ids by using the Hilbert-curve so that we can protect the group information while processing a query. Finally, our periodic function based data grouping and query result authentication scheme can reduce the data size of the query result verification. Through performance evaluation, we show that our method achieves better performance than an existing bucket-based verification scheme, it is 1.6 times faster in terms of query processing time and produces verification data that is 20 times smaller.

Quantitative Feasibility Evaluation of 11C-Methionine Positron Emission Tomography Images in Gamma Knife Radiosurgery : Phantom-Based Study and Clinical Application

  • Lim, Sa-Hoe;Jung, Tae-Young;Jung, Shin;Kim, In-Young;Moon, Kyung-Sub;Kwon, Seong-Young;Jang, Woo-Youl
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.476-486
    • /
    • 2019
  • Objective : The functional information of $^{11}C$-methionine positron emission tomography (MET-PET) images can be applied for Gamma knife radiosurgery (GKR) and its image quality may affect defining the tumor. This study conducted the phantom-based evaluation for geometric accuracy and functional characteristic of diagnostic MET-PET image co-registered with stereotactic image in Leksell $GammaPlan^{(R)}$ (LGP) and also investigated clinical application of these images in metastatic brain tumors. Methods : Two types of cylindrical acrylic phantoms fabricated in-house were used for this study : the phantom with an array-shaped axial rod insert and the phantom with different sized tube indicators. The phantoms were mounted on the stereotactic frame and scanned using computed tomography (CT), magnetic resonance imaging (MRI), and PET system. Three-dimensional coordinate values on co-registered MET-PET images were compared with those on stereotactic CT image in LGP. MET uptake values of different sized indicators inside phantom were evaluated. We also evaluated the CT and MRI co-registered stereotactic MET-PET images with MR-enhancing volume and PET-metabolic tumor volume (MTV) in 14 metastatic brain tumors. Results : Imaging distortion of MET-PET was maintained stable at less than approximately 3% on mean value. There was no statistical difference in the geometric accuracy according to co-registered reference stereotactic images. In functional characteristic study for MET-PET image, the indicator on the lateral side of the phantom exhibited higher uptake than that on the medial side. This effect decreased as the size of the object increased. In 14 metastatic tumors, the median matching percentage between MR-enhancing volume and PET-MTV was 36.8% on PET/MR fusion images and 39.9% on PET/CT fusion images. Conclusion : The geometric accuracy of the diagnostic MET-PET co-registered with stereotactic MR in LGP is acceptable on phantom-based study. However, the MET-PET images could the limitations in providing exact stereotactic information in clinical study.

A study on visuomotor and visuotactile synchronization in full body ownership illusion with virtual avatars (가상 아바타와의 전신 몸 소유감에서 시각-운동 및 시각-촉각 동기화에 관한 연구)

  • Oh, Jintaek;Kim, Jihwan;Kim, Kwanguk
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.1-11
    • /
    • 2022
  • Body ownership illusion (BOI), which means 'the illusion that a non-bodily object feels like my body', has been actively studied since the Rubber-hand Illusion showed that a person can feel a rubber hand like one's own hand. It has been proven that BOI can be elicited for virtual bodies in virtual reality. Although many studies have been examined the effect of visuomotor (VM) and visuotactile (VT) stimuli, which are mainly used for the elicitation of BOI, there were very limited studies that delivered both stimuli to the whole body at the same time. In this paper, we investigated how each stimulus affects BOI when delivering VM and VT stimulisimultaneously to the virtual avatar, and examined user experience that appears as presence, emotion, and virtual motion sickness. The results showed that BOI was high when VM is synchronous, but there was no significant difference according to VT levels. In the case of presence, it was confirmed that VT affects only when VM is synchronous, and in the case of emotion, both VM and VT affect valence, and in the case of virtual motion sickness, a statistical difference is not found.These results suggest that overall synchrony of VM is important factor in BOI with virtual avatars, but that the matching VT affects subjective experience such as presence when VM is synchronous.

An Analysis of 3D Mesh Accuracy and Completeness of Combination of Drone and Smartphone Images for Building 3D Modeling (건물3D모델링을 위한 드론과 스마트폰영상 조합의 3D메쉬 정확도 및 완성도 분석)

  • Han, Seung-Hee;Yoo, Sang-Hyeon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.69-80
    • /
    • 2022
  • Drone photogrammetry generally acquires images vertically or obliquely from above, so when photographing for the purpose of three-dimensional modeling, image matching for the ground of a building and spatial accuracy of point cloud data are poor, resulting in poor 3D mesh completeness. Therefore, to overcome this, this study analyzed the spatial accuracy of each drone image by acquiring smartphone images from the ground, and evaluated the accuracy improvement and completeness of 3D mesh when the smartphone image is not combined with the drone image. As a result of the study, the horizontal (x,y) accuracy of drone photogrammetry was about 1/200,000, similar to that of traditional photogrammetry. In addition, it was analyzed that the accuracy according to the photographing method was more affected by the photographing angle of the object than the increase in the number of photos. In the case of the smartphone image combination, the accuracy was not significantly affected, but the completeness of the 3D mesh was able to obtain a 3D mesh of about LoD3 that satisfies the digital twin city standard. Therefore, it is judged that it can be sufficiently used to build a 3D model for digital twin city by combining drone images and smartphones or DSLR images taken on the ground.

Automatic Validation of the Geometric Quality of Crowdsourcing Drone Imagery (크라우드소싱 드론 영상의 기하학적 품질 자동 검증)

  • Dongho Lee ;Kyoungah Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.577-587
    • /
    • 2023
  • The utilization of crowdsourced spatial data has been actively researched; however, issues stemming from the uncertainty of data quality have been raised. In particular, when low-quality data is mixed into drone imagery datasets, it can degrade the quality of spatial information output. In order to address these problems, the study presents a methodology for automatically validating the geometric quality of crowdsourced imagery. Key quality factors such as spatial resolution, resolution variation, matching point reprojection error, and bundle adjustment results are utilized. To classify imagery suitable for spatial information generation, training and validation datasets are constructed, and machine learning is conducted using a radial basis function (RBF)-based support vector machine (SVM) model. The trained SVM model achieved a classification accuracy of 99.1%. To evaluate the effectiveness of the quality validation model, imagery sets before and after applying the model to drone imagery not used in training and validation are compared by generating orthoimages. The results confirm that the application of the quality validation model reduces various distortions that can be included in orthoimages and enhances object identifiability. The proposed quality validation methodology is expected to increase the utility of crowdsourced data in spatial information generation by automatically selecting high-quality data from the multitude of crowdsourced data with varying qualities.

A Study on the Spatial Configuration in the Metaverse - Focusing on Communication Game Virtual Worlds's 'Animal Crossing' - (메타버스에서의 공간 형태 구성에 관한 연구 - 커뮤니케이션 게임 가상세계 '모여봐요 동물의 숲'을 중심으로 -)

  • Yu, Yeon Seo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Alvin Toffler mentioned that it is important for future society to keep pace with synchronization and that time deviations can hinder social development. As we experience the new normal era of untact, we have experienced an increase in non-face-to-face contact and accelerated digital transformation. Amid these rapid changes, we can maintain the need for synchronization or change in space. Therefore, we would like to study what kind of settlements people create and choose. We looked at the metaverse as an object that could indirectly find out about this, and used the content called "Animal Crossing" to collect data related to the spatial form of the metaverse. Sampling utilized a judgment sampling method during non-probability sampling to alleviate differences due to the progress of the game. The collected data was classified according to floor plan and location type and briefly organized through descriptive statistics. After matching each facility by use, data was constructed by setting coordinates for each cluster and listing them. This data was interpreted graphically on the coordinate plane for each cluster, and Euclidean analysis was performed to analyze the relationships between clusters and residential choice using a Euclidean matrix. As a result of the analysis, it could be interpreted that efficiency was pursued by arranging similar functions in close proximity. Nevertheless, when choosing a residence, it was interpreted that the intention was to create a community through arrangement adjacent to residents rather than efficiency or convenience. Due to the differences between the metaverse and the real world, it is expected that there will be limitations in equating it with reality. However, through the space expressed in the virtual world by people who are far away from the constraints of reality, we can indirectly know the wishes that we have not been able to express due to our lack of awareness.