• Title/Summary/Keyword: object matching

Search Result 645, Processing Time 0.026 seconds

The effects of emotional matching between video color-temperature and scent on reality improvement (영상의 색온도와 향의 감성적 일치가 영상실감 향상에 미치는 효과)

  • Lee, Guk-Hee;Li, Hyung-Chul O.;Ahn, ChungHyun;Ki, MyungSeok;Kim, ShinWoo
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.29-41
    • /
    • 2015
  • Technologies for video reality (e.g., 3D displays, vibration, surround sound, etc.) utilize various sensory input and many of them are now commercialized. However, when it comes to the use of olfaction for video reality, there has not been much progress in both practical and academic respects. Because olfactory sense is tightly associated with human emotion, proper use of this sense is expected to help to achieve a high degree of video reality. This research tested the effects of a video's color-temperature related scent on reality improvement when the video does not have apparent object (e.g., coffee, flower, etc.) which suggest specific smell. To this end, we had participants to rate 48 scents based on a color-temperature scale of 1,500K (warm)-15,000K (cold) and chose 8 scents (4 warm scents, 4 cold scents) which showed clear correspondence with warm or cold color-temperatures (Expt. 1). And then after applying warm (3,000K), neutral (6,500K), or cold (14,000K) color-temperatures to images or videos, we presented warm or cold scents to participants while they rate reality improvement on a 7-point scale depending on relatedness of scent vs. color-temperature (related, unrelated, neutral) (Expts. 2-3). The results showed that participants experienced greater reality when scent and color-temperature was related than when they were unrelated or neutral. This research has important practical implications in demonstrating the possibility that provision of color-temperature related scent improves video reality even when there are no concrete objects that suggest specific olfactory information.

Building Matching Analysis and New Building Update for the Integrated Use of the Digital Map and the Road Name Address Map (수치지도와 도로명주소지도의 통합 활용을 위한 건물 매칭 분석과 신규 건물 갱신)

  • Yeom, Jun Ho;Huh, Yong;Lee, Jeabin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.459-467
    • /
    • 2014
  • The importance of fusion and association using established spatial information has increased gradually with the production and supply of various spatial data by public institutions. The generation of necessary spatial information without field investigation and additional surveying can reduce time, labor, and financial costs. However, the study of the integration of the newly introduced road name address map with the digital map is very insufficient. Even though the use of the road name address map is encouraged for public works related to spatial information, the digital map is still widely used because it is the national basic map. Therefore, in this study, building matching and update were performed to associate the digital map with the road name address map. After geometric calibration using the block-based ICP (Iterative Closest Point) method, multi-scale corresponding pair searching with hierarchical clustering was applied to detect the multi-type match. The accuracy assessment showed that the proposed method is more than 95% accurate and the matched building layer of the two maps is useful for the integrated application and fusion. In addition, the use of the road name address map, which carries the latest and most frequently renewed data, enables cost-effective updating of new buildings.

The Recognition of Occluded 2-D Objects Using the String Matching and Hash Retrieval Algorithm (스트링 매칭과 해시 검색을 이용한 겹쳐진 이차원 물체의 인식)

  • Kim, Kwan-Dong;Lee, Ji-Yong;Lee, Byeong-Gon;Ahn, Jae-Hyeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.7
    • /
    • pp.1923-1932
    • /
    • 1998
  • This paper deals with a 2-D objects recognition algorithm. And in this paper, we present an algorithm which can reduce the computation time in model retrieval by means of hashing technique instead of using the binary~tree method. In this paper, we treat an object boundary as a string of structural units and use an attributed string matching algorithm to compute similarity measure between two strings. We select from the privileged strings a privileged string wIth mmimal eccentricity. This privileged string is treated as the reference string. And thell we wllstructed hash table using the distance between privileged string and the reference string as a key value. Once the database of all model strings is built, the recognition proceeds by segmenting the scene into a polygonal approximation. The distance between privileged string extracted from the scene and the reference string is used for model hypothesis rerieval from the table. As a result of the computer simulation, the proposed method can recognize objects only computing, the distance 2-3tiems, while previous method should compute the distance 8-10 times for model retrieval.

  • PDF

Distance Measurement of Small Moving Object using Infrared Stereo Camera (적외선 스테레오 카메라를 이용한 소형 이동체의 거리 측정)

  • Oh, Jun-Ho;Lee, Sang-Hwa;Lee, Boo-Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.53-61
    • /
    • 2012
  • This paper proposes a real-time distance measurement system of high temperature and high speed target using infrared stereo camera. We construct an infrared stereo camera system that measure the difference between target and background temperatures for automatic target measurement. First, the proposed method detects target region based on target motion and intensity variation of local region using difference between target and background temperatures. Second, stereo matching by left and right target information is used to estimate disparity about real-time distance of target. In the proposed method using infrared stereo camera system, we compare distances in three dimension trajectory measuring instrument and in infrared stereo camera measurement. In this experiment from three video data, the result shows an average 9.68% distance error rate. The proposed method is suitable for distance and position measurement of varied targets using infrared stereo system.

Detection of M:N corresponding class group pairs between two spatial datasets with agglomerative hierarchical clustering (응집 계층 군집화 기법을 이용한 이종 공간정보의 M:N 대응 클래스 군집 쌍 탐색)

  • Huh, Yong;Kim, Jung-Ok;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.125-134
    • /
    • 2012
  • In this paper, we propose a method to analyze M:N corresponding relations in semantic matching, especially focusing on feature class matching. Similarities between any class pairs are measured by spatial objects which coexist in the class pairs, and corresponding classes are obtained by clustering with these pairwise similarities. We applied a graph embedding method, which constructs a global configuration of each class in a low-dimensional Euclidean space while preserving the above pairwise similarities, so that the distances between the embedded classes are proportional to the overall degree of similarity on the edge paths in the graph. Thus, the clustering problem could be solved by employing a general clustering algorithm with the embedded coordinates. We applied the proposed method to polygon object layers in a topographic map and land parcel categories in a cadastral map of Suwon area and evaluated the results. F-measures of the detected class pairs were analyzed to validate the results. And some class pairs which would not detected by analysis on nominal class names were detected by the proposed method.

Multiple Camera Based Imaging System with Wide-view and High Resolution and Real-time Image Registration Algorithm (다중 카메라 기반 대영역 고해상도 영상획득 시스템과 실시간 영상 정합 알고리즘)

  • Lee, Seung-Hyun;Kim, Min-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.10-16
    • /
    • 2012
  • For high speed visual inspection in semiconductor industries, it is essential to acquire two-dimensional images on regions of interests with a large field of view (FOV) and a high resolution simultaneously. In this paper, an imaging system is newly proposed to achieve high quality image in terms of precision and FOV, which is composed of single lens, a beam splitter, two camera sensors, and stereo image grabbing board. For simultaneously acquired object images from two camera sensors, Zhang's camera calibration method is applied to calibrate each camera first of all. Secondly, to find a mathematical mapping function between two images acquired from different view cameras, the matching matrix from multiview camera geometry is calculated based on their image homography. Through the image homography, two images are finally registered to secure a large inspection FOV. Here the inspection system of using multiple images from multiple cameras need very fast processing unit for real-time image matching. For this purpose, parallel processing hardware and software are utilized, such as Compute Unified Device Architecture (CUDA). As a result, we can obtain a matched image from two separated images in real-time. Finally, the acquired homography is evaluated in term of accuracy through a series of experiments, and the obtained results shows the effectiveness of the proposed system and method.

Weighted Census Transform and Guide Filtering based Depth Map Generation Method (가중치를 이용한 센서스 변환과 가이드 필터링 기반깊이지도 생성 방법)

  • Mun, Ji-Hun;Ho, Yo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.92-98
    • /
    • 2017
  • Generally, image contains geometrical and radiometric errors. Census transform can solve the stereo mismatching problem caused by the radiometric distortion. Since the general census transform compares center of window pixel value with neighbor pixel value, it is hard to obtain an accurate matching result when the difference of pixel value is not large. To solve that problem, we propose a census transform method that applies different 4-step weight for each pixel value difference by applying an assistance window inside the window kernel. If the current pixel value is larger than the average of assistance window pixel value, a high weight value is given. Otherwise, a low weight value is assigned to perform a differential census transform. After generating an initial disparity map using a weighted census transform and input images, the gradient information is additionally used to model a cost function for generating a final disparity map. In order to find an optimal cost value, we use guided filtering. Since the filtering is performed using the input image and the disparity image, the object boundary region can be preserved. From the experimental results, we confirm that the performance of the proposed stereo matching method is improved compare to the conventional method.

Comparison of Open Source based Algorithms and Filtering Methods for UAS Image Processing (오픈소스 기반 UAS 영상 재현 알고리즘 및 필터링 기법 비교)

  • Kim, Tae Hee;Lee, Yong Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.155-168
    • /
    • 2020
  • Open source is a key growth engine of the 4th industrial revolution, and the continuous development and use of various algorithms for image processing is expected. The purpose of this study is to examine the effectiveness of the UAS image processing open source based algorithm by comparing and analyzing the water reproduction and moving object filtering function and the time required for data processing in 3D reproduction. Five matching algorithms were compared based on recall and processing speed through the 'ANN-Benchmarks' program, and HNSW (Hierarchical Navigable Small World) matching algorithm was judged to be the best. Based on this, 108 algorithms for image processing were constructed by combining each methods of triangulation, point cloud data densification, and surface generation. In addition, the 3D reproduction and data processing time of 108 algorithms for image processing were studied for UAS (Unmanned Aerial System) images of a park adjacent to the sea, and compared and analyzed with the commercial image processing software 'Pix4D Mapper'. As a result of the study, the algorithms that are good in terms of reproducing water and filtering functions of moving objects during 3D reproduction were specified, respectively, and the algorithm with the lowest required time was selected, and the effectiveness of the algorithm was verified by comparing it with the result of 'Pix4D Mapper'.

A study on the improvement of artificial intelligence-based Parking control system to prevent vehicle access with fake license plates (위조번호판 부착 차량 출입 방지를 위한 인공지능 기반의 주차관제시스템 개선 방안)

  • Jang, Sungmin;Iee, Jeongwoo;Park, Jonghyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.57-74
    • /
    • 2022
  • Recently, artificial intelligence parking control systems have increased the recognition rate of vehicle license plates using deep learning, but there is a problem that they cannot determine vehicles with fake license plates. Despite these security problems, several institutions have been using the existing system so far. For example, in an experiment using a counterfeit license plate, there are cases of successful entry into major government agencies. This paper proposes an improved system over the existing artificial intelligence parking control system to prevent vehicles with such fake license plates from entering. The proposed method is to use the degree of matching of the front feature points of the vehicle as a passing criterion using the ORB algorithm that extracts information on feature points characterized by an image, just as the existing system uses the matching of vehicle license plates as a passing criterion. In addition, a procedure for checking whether a vehicle exists inside was included in the proposed system to prevent the entry of the same type of vehicle with a fake license plate. As a result of the experiment, it showed the improved performance in identifying vehicles with fake license plates compared to the existing system. These results confirmed that the methods proposed in this paper could be applied to the existing parking control system while taking the flow of the original artificial intelligence parking control system to prevent vehicles with fake license plates from entering.

Entropy-Based 6 Degrees of Freedom Extraction for the W-band Synthetic Aperture Radar Image Reconstruction (W-band Synthetic Aperture Radar 영상 복원을 위한 엔트로피 기반의 6 Degrees of Freedom 추출)

  • Hyokbeen Lee;Duk-jin Kim;Junwoo Kim;Juyoung Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1245-1254
    • /
    • 2023
  • Significant research has been conducted on the W-band synthetic aperture radar (SAR) system that utilizes the 77 GHz frequency modulation continuous wave (FMCW) radar. To reconstruct the high-resolution W-band SAR image, it is necessary to transform the point cloud acquired from the stereo cameras or the LiDAR in the direction of 6 degrees of freedom (DOF) and apply them to the SAR signal processing. However, there are difficulties in matching images due to the different geometric structures of images acquired from different sensors. In this study, we present the method to extract an optimized depth map by obtaining 6 DOF of the point cloud using a gradient descent method based on the entropy of the SAR image. An experiment was conducted to reconstruct a tree, which is a major road environment object, using the constructed W-band SAR system. The SAR image, reconstructed using the entropy-based gradient descent method, showed a decrease of 53.2828 in mean square error and an increase of 0.5529 in the structural similarity index, compared to SAR images reconstructed from radar coordinates.