• Title/Summary/Keyword: object matching

Search Result 644, Processing Time 0.029 seconds

The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images (적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법)

  • Kim, Jae-Hyup;Choi, Bong-Joon;Chun, Seung-Woo;Lee, Jong-Min;Moon, Young-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose the target detection method using image displacement, and classification method using SURF(Speeded Up Robust Features) feature points and BAS(Beam Angle Statistics) in infrared images. The SURF method that is a typical correspondence matching method in the area of image processing has been widely used, because it is significantly faster than the SIFT(Scale Invariant Feature Transform) method, and produces a similar performance. In addition, in most SURF based object recognition method, it consists of feature point extraction and matching process. In proposed method, it detects the target area using the displacement, and target classification is performed by using the geometry of SURF feature points. The proposed method was applied to the unmanned target detection/recognition system. The experimental results in virtual images and real images, we have approximately 73~85% of the classification performance.

Dynamic Reconstruction Algorithm of 3D Volumetric Models (3D 볼류메트릭 모델의 동적 복원 알고리즘)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.207-215
    • /
    • 2022
  • The latest volumetric technology's high geometrical accuracy and realism ensure a high degree of correspondence between the real object and the captured 3D model. Nevertheless, since the 3D model obtained in this way constitutes a sequence as a completely independent 3D model between frames, the consistency of the model surface structure (geometry) is not guaranteed for every frame, and the density of vertices is very high. It can be seen that the interconnection node (Edge) becomes very complicated. 3D models created using this technology are inherently different from models created in movie or video game production pipelines and are not suitable for direct use in applications such as real-time rendering, animation and simulation, and compression. In contrast, our method achieves consistency in the quality of the volumetric 3D model sequence by linking re-meshing, which ensures high consistency of the 3D model surface structure between frames and the gradual deformation and texture transfer through correspondence and matching of non-rigid surfaces. And It maintains the consistency of volumetric 3D model sequence quality and provides post-processing automation.

LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving (도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘)

  • Noh, Hanseok;Lee, Hyunsung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.

3-D Building Reconstruction from Standard IKONOS Stereo Products in Dense Urban Areas (IKONOS 컬러 입체영상을 이용한 대규모 도심지역의 3차원 건물복원)

  • Lee, Suk Kun;Park, Chung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.535-540
    • /
    • 2006
  • This paper presented an effective strategy to extract the buildings and to reconstruct 3-D buildings using high-resolution multispectral stereo satellite images. Proposed scheme contained three major steps: building enhancement and segmentation using both BDT (Background Discriminant Transformation) and ISODATA algorithm, conjugate building identification using the object matching with Hausdorff distance and color indexing, and 3-D building reconstruction using photogrammetric techniques. IKONOS multispectral stereo images were used to evaluate the scheme. As a result, the BDT technique was verified as an effective tool for enhancing building areas since BDT suppressed the dominance of background to enhance the building as a non-background. In building recognition, color information itself was not enough to identify the conjugate building pairs since most buildings are composed of similar materials such as concrete. When both Hausdorff distance for edge information and color indexing for color information were combined, most segmented buildings in the stereo images were correctly identified. Finally, 3-D building models were successfully generated using the space intersection by the forward RFM (Rational Function Model).

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

Iterative Generalized Hough Transform using Multiresolution Search (다중해상도 탐색을 이용한 반복 일반화 허프 변환)

  • ;W. Nick Street
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.10
    • /
    • pp.973-982
    • /
    • 2003
  • This paper presents an efficient method for automatically detecting objects in a given image. The GHT is a robust template matching algorithm for automatic object detection in order to find objects of various shapes. Many different templates are applied by the GHT in order to find objects of various shapes and size. Every boundary detected by the GHT scan be used as an initial outline for more precise contour-finding techniques. The main weakness of the GHT is the excessive time and memory requirements. In order to overcome this drawback, the proposed algorithm uses a multiresolution search by scaling down the original image to half-sized and quarter-sized images. Using the information from the first iterative GHT on a quarter-sized image, the range of nuclear sizes is determined to limit the parameter space of the half-sized image. After the second iterative GHT on the half-sized image, nuclei are detected by the fine search and segmented with edge information which helps determine the exact boundary. The experimental results show that this method gives reduction in computation time and memory usage without loss of accuracy.

Object Location Sensing using Signal Pattern Matching Methods (신호 패턴 매칭 방법을 이용한 이동체 위치 인식)

  • Byun, Yung-Cheol;Park, Sang-Yeol
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.548-558
    • /
    • 2007
  • This paper presents a method of location sensing of mobile objects using RF devices. By analyzing signal strengths between a certain number of fixed RF devices and a moving RF device, we can recognize the location of a moving object in real time. Firstly, signal strength values between RF devices are gathered, and then the values are normalized and constructed as a model feature vector for specific location. A number of model patterns are acquired and registered for all of the location which we want to recognize. For location sensing, signal strength information for an arbitrary moving RF device is acquired and compared with model feature vectors registered previously. In this case, distance value is calculated and the moving RF device is classified as one of the known model patterns. Experimental results show that our methods have performed the location sensing successfully with 100% rate of recognition when the number of fixed RF devices is 10 or more than 12. In terms of cost and applicability, experimental results seem to be very encouraging.

  • PDF

Distinction of Real Face and Photo using Stereo Vision (스테레오비전을 이용한 실물 얼굴과 사진의 구분)

  • Shin, Jin-Seob;Kim, Hyun-Jung;Won, Il-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.17-25
    • /
    • 2014
  • In the devices that leave video records, it is an important issue to distinguish whether the input image is a real object or a photo when securing an identifying image. Using a single image and sensor, which is a simple way to distinguish the target from distance measurement has many weaknesses. Thus, this paper proposes a way to distinguish a simple photo and a real object by using stereo images. It is not only measures the distance to the target, but also checks a three-dimensional effect by making the depth map of the face area. They take pictures of the photos and the real faces, and the measured value of the depth map is applied to the learning algorithm. Exactly through iterative learning to distinguish between the real faces and the photos looked for patterns. The usefulness of the proposed algorithm was verified experimentally.

Auto-Analysis of Traffic Flow through Semantic Modeling of Moving Objects (움직임 객체의 의미적 모델링을 통한 차량 흐름 자동 분석)

  • Choi, Chang;Cho, Mi-Young;Choi, Jun-Ho;Choi, Dong-Jin;Kim, Pan-Koo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.36-45
    • /
    • 2009
  • Recently, there are interested in the automatic traffic flowing and accident detection using various low level information from video in the road. In this paper, the automatic traffic flowing and algorithm, and application of traffic accident detection using traffic management systems are studied. To achieve these purposes, the spatio-temporal relation models using topological and directional relations have been made, then a matching of the proposed models with the directional motion verbs proposed by Levin's verbs of inherently directed motion is applied. Finally, the synonym and antonym are inserted by using WordNet. For the similarity measuring between proposed modeling and trajectory of moving object in the video, the objects are extracted, and then compared with the trajectories of moving objects by the proposed modeling. Because of the different features with each proposed modeling, the rules that have been generated will be applied to the similarity measurement by TSR (Tangent Space Representation). Through this research, we can extend our results to the automatic accident detection of vehicle using CCTV.

  • PDF

Visualization of The Three Dimensional Information Using Stereo Camera (스테레오 카메라를 이용한 3차원 정보의 가시화)

  • Lee, Nam-Oh;Park, Soon-Yong;Lee, Seung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.15-20
    • /
    • 2010
  • The three dimensional information is extracted and visualized using by stereo images of the object and the method for a 3D stereoscopic image is presented by the vergence control algorithm. The matching, which is applied a undistortion of lens and the energy function, is executed for the efficient extraction three dimensional information. Especially, applying the optimized method of matched line to the multi direction of the disparity imges. The disadvantages of multi directional method and reliability expansion method is collected. The matched interesting range of the three dimensional information is visualized using by VRML and more 3D stereoscopic image is visualized through the vergence control according to distance of the object. more improved three dimensional information is provided to observer by visualizing both of them at the same time.