• Title/Summary/Keyword: object coordinates

Search Result 299, Processing Time 0.026 seconds

Priority Management Using the QGIS for Sources of Contaminated Soil in Gyeonggi-do Province (QGIS를 이용한 경기도내 토양오염원의 중점관리 지점 선정)

  • Son, Yeong-Geum;Kim, Ji-Young;Park, Jin-Ho;Im, Heung-Bin;Kim, Jong-Su
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.88-95
    • /
    • 2020
  • Object: The purpose of this study was to select priority points for soil management using the location of groundwater and to suggest this method for soil contamination surveys. Method: Groundwater impact range was set to an area of 100 to 500 meters from the center point of agricultural groundwater wells. Data on industrial complex and factory areas, areas of stored or used ores and scrap metals, areas associated with waste and recycling, and traffic-related facilities areas were collected and checked for whether they fall within the groundwater impact range. Longitude and latitude coordinates of these data were mapped on the groundwater impact range using QGIS (Quantum Geographic Information System). Results: Considering the groundwater impact range, the points were selected as follows: 589 points were selected from 6,811 factories and 259 points were selected from 1,511 recycling business points. Traffic-related facility areas were divided between gas stations, bus depots, and auto mechanics. Thirty-four points were selected from 149 bus depots and 573 points were selected from 6,013 auto mechanic points. From the 2,409 gas station points, 323 were selected. Conclusion: Contaminated soil influences groundwater and crops, which can harm human health. However, soil pollution is not easily identified, so it is difficult to determine what has occurred. Pollution must be prevented beforehand and contaminated soil found. By selecting and investigating soil contamination survey points in consideration of the location of groundwater wells, we can safely manage water resources by preventing groundwater contamination in advance.

Real-time Human Pose Estimation using RGB-D images and Deep Learning

  • Rim, Beanbonyka;Sung, Nak-Jun;Ma, Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.113-121
    • /
    • 2020
  • Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.

Displacement Measurement of a Floating Structure Model Using a Video Data (동영상을 이용한 부유구조물 모형의 변위 관측)

  • Han, Dong Yeob;Kim, Hyun Woo;Kim, Jae Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.159-164
    • /
    • 2013
  • It is well known that a single moving camera video is capable of extracting the 3-dimensional position of an object. With this in mind, current research performed image-based monitoring to establish a floating structure model using a camcorder system. Following this, the present study extracted frame images from digital camcorder video clips and matched the interest points to obtain relative 3D coordinates for both regular and irregular wave conditions. Then, the researchers evaluated the transformation accuracy of the modified SURF-based matching and image-based displacement estimation of the floating structure model in regular wave condition. For the regular wave condition, the wave generator's setting value was 3.0 sec and the cycle of the image-based displacement result was 2.993 sec. Taking into account mechanical error, these values can be considered as very similar. In terms of visual inspection, the researchers observed the shape of a regular wave in the 3-dimensional and 1-dimensional figures through the projection on X Y Z axis. In conclusion, it was possible to calculate the displacement of a floating structure module in near real-time using an average digital camcorder with 30fps video.

Hand Tracking Based Projection Mapping System and Applications (손 위치 트래킹 기반의 프로젝션 매핑 시스템 및 응용)

  • Lee, Cheongun;Park, Sanghun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper we present a projection mapping system onto human's moving hand by a projector as information delivery media and Kinect to recognize hand motion. Most traditional projection mapping techniques project a variety of images onto stationary objects, however, our system provides new user experience by projecting images onto the center of the moving palm. We explain development process of the system, and production of content as applications on our system. We propose hardware organization and development process of open software architecture based on object oriented programming approach. For stable image projection, we describe a device calibration method between the projector and Kinect in three dimensional space, and a denoising technique to minimize artifacts from Kinect coordinates vibration and unstable hand tremor.

Simple Camera Calibration Using Neural Networks (신경망을 이용한 간단한 카메라교정)

  • 전정희;김충원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.867-873
    • /
    • 1999
  • Camera calibration is a procedure which calculates internal and external parameters of a camera with the Down world coordinates of the control points. Accurate camera calibration is required for achieving accurate visual measurements. In this paper, we propose a simple and flexible camera calibration using neural networks which doesn't require a special knowledge of 3D geometry and camera optics. There are some applications which are not in need of the values of the internal and external parameters. The proposed method is very useful to these applications. Also, the proposed camera calibration has advantage that resolves the ill-condition as object plane is near parallel image plane. The ill-condition is frequently met in product inspection. For little more accurate calibration, acquired image is divided into two regions according to radial distortion of lens and neural network is applied to each region. Experimental results and comparison with Tsai's algorithm prove the validity of the proposed camera calibration.

  • PDF

Three-Dimensional Finite Difference Analysis of Anisotropic Body with Arbitrary Boundary Conditions (임의의 경계조건을 갖는 비등방성 탄성체의 3차원 유한차분 해석)

  • Lee, Sang Youl;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.303-315
    • /
    • 2000
  • The main object of this study is to analyze mechanical behaviors as anisotropic three-dimensional body under various static loads. This paper presents the applicability of the finite difference method to three dimensional problem of anisotropic body. The finite difference method as applied here is generalized to anisotropic three-dimensional problem of elastic body where the governing differential equations of equilibrium of such bodies are expressed in terms of the displacement u, v, and w in the coordinates axes x, y and z, care being taken to modify the finite difference expressions to satisfy the appropriate boundary conditions. By adopting a new three dimensional finite difference modelling including elimination of pivotal difference points in the case of free boundary condition, the three dimensional problem of anisotropic body was successfully completed. Several numerical results show quick convergence and numerical validity of finite difference technique in three dimensional problem.

  • PDF

A New Efficient Detection Method in Lane Road Environment (도로 환경에 효율적인 새로운 차선 검출 방법)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • In this paper, we propose a new real-time lane detection method that is efficient for road environment. Existing methods have a problem of low reliability under environmental changes. In order to overcome this problem, we emphasize the lane candidate area by using gray level division. And Extracts a straight line component near the lane by using the Hough transform, and generates an ROI for each straight line based on the extracted coordinates. And integrates the generated ROI images. Then, the lane is determined by dividing the object using the dual queue in the ROI image. The proposed method is able to detect lanes even in the environmental change unlike the conventional method. And It is possible to obtain an advantage that the area corresponding to the background such as sky, mountain, etc. is efficiently removed and high reliability is obtained.

The Grid and Axis in Modern Architecture From Durand to Le Corbusier (현대건축에서 그리드와 축에 관한 연구 -듀랑에서부터 르 코르뷔제까지-)

  • Pai, Hyung-Min
    • Journal of architectural history
    • /
    • v.11 no.4 s.32
    • /
    • pp.99-115
    • /
    • 2002
  • Centered on Durand and Le Corbusier, this study analyses the changing status of the grid and axis in modern architecture. In the Renaissance, the taxis grid operated as a contour grid, defining the elements and space of the building as part of closed harmonized world. In his Pre'cis des lec., ons d'architecture, Durand provides the most explicit demonstration of a new modem grid in which its lines function as spatial and structural axes. In principle these axes are coordinates for the placements of a priori elements but in Beaux-Arts practice, as Durand himself acknowledged, they involve a simultaneous process in which the spatial axis sets up the basic parti and the structural axis is developed into the building's poche'. As a coordinate, Durand's grid provides a place for the 'subject' to enter the architectural process. At the same time, it is the object of the subject's gaze, the dense site of the subject's transformative actions. Though Le Corbusier is noted for his frequent attacks on the academic system, his architecture should be seen within the continuity of the classical tradition. He redefines the Beaux-Arts axis as a moving and seeing observer, and continues the discipline of the plan, the essential discipline of the Beaux-Arts system. In his dialectics, an intellectual scheme which extends to his commentators, the intention and will of the subject must come in tune with the objective material form of the building. Like Durand, Le Corbusier's axis provides the medium for the subject to enter. Unlike the Beaux-Arts system, however, Le Corbusier's mobile subject no longer has a holistic view of the building previously provided by the central axis. If there is a parti for Le Corbusier, it consists of the domino grid as a potential, but nonetheless, tangible form. In comparison with the Beaux-Arts structural grid, his gaze no longer lingers on their lines because they no longer constitute a formal process tied to the development of a thick articulated structure. Le Corbusier's grid constitutes a 'loose' form, one that breaks down the hierarchical nature of the Beaux-Arts system.

  • PDF

Location Tracking in Indoor Symbolic Space with RFID Sensors (RFID 센서를 이용한 실내 기호공간에서의 위치추적)

  • Kang, Hye-Young;Hwang, Jung-Rae;Li, Ki-Joune
    • Spatial Information Research
    • /
    • v.19 no.3
    • /
    • pp.53-62
    • /
    • 2011
  • Spatial information services in indoor space are an im portant application area of GIS as in outdoor space. Unlike in outdoor space, a position in indoor space is specified by a symbolic code such as room number, rather than coordinate. Therefore tracking in indoor space is no longer a prediction of coordinates but a symbolic estimation on the current position of a moving object. In this paper, we propose a framework for tracking moving objects in indoor symbolic space with RFID sensors. First, we introduce the concepts of indoor symbolic space and tracking in indoor symbolic space, and define the accessibility graph for trackable indoor symbolic space. Second, we propose a deployment method of RFID readers and a construction algorithm of accessibility graph for trackable indoor symbolic space. Third, a tracking method is proposed for moving objects in symbolic indoor space with RFID sensors. Finally, we present an implementation exmaple and the result of experiment with real data to validate the proposed method.

Detection of Moving Objects using Depth Frame Data of 3D Sensor (3D센서의 Depth frame 데이터를 이용한 이동물체 감지)

  • Lee, Seong-Ho;Han, Kyong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.243-248
    • /
    • 2014
  • This study presents an investigation into the ways to detect the areas of object movement with Kinect's Depth Frame, which is capable of receiving 3D information regardless of external light sources. Applied to remove noises along the boundaries of objects among the depth information received from sensors were the blurring technique for the x and y coordinates of pixels and the frequency filter for the z coordinate. In addition, a clustering filter was applied according to the changing amounts of adjacent pixels to extract the areas of moving objects. It was also designed to detect fast movements above the standard according to filter settings, being applicable to mobile robots. Detected movements can be applied to security systems when being delivered to distant places via a network and can also be expanded to large-scale data through concerned information.