• Title/Summary/Keyword: nutrient salts

Search Result 70, Processing Time 0.031 seconds

Elution Behavior of Nutrient Salts from Sediment and its Impact on Water Bodies

  • Wada, Keiko;Haruki, Fumio;Ishita, Kyoji;Okada, Yuki
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • This paper describes the influence of nutrient salts eluted from the bottom of a closed water area where polluted sediment has been deposited by inflowing river water. The elution pattern was monitored at our experimental facility. Both the sediment pore water and water above the bottom were sampled using a dialyzer sampler (peeper). The pore water of the eutrophicated sediment contained a large amount of nutrient salts, and the effect of elution was confined to a limited area of the bottom surface. The nutrient concentration of the sediment pore water was closely related to both the water temperature and dissolved oxygen (DO) concentration. The eluted nutrients from the sediment provided a source for phytoplankton and algae growth. This experimental data indicated that the water quality of the surface was not directly connected to the eluted nutrient salts, while it was indirectly affected by the total ecosystem, including all the organisms within an area and their environment.

The Environmental Factors Affecting the Distribution and Activity of Bacteria in the Estuary of Naktong River (낙동강 하구의 세균분포와 활성에 미치는 환경요인)

  • 안태영;조기성;하영칠
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.329-338
    • /
    • 1991
  • From July 1985 to December 1986, 28 variables of phycal-chemical factors, bacteria and heterotrophic activity were investigated 17 times at 3 stations in the estuary of Naktong River and the influences of environmental factors to bacterial population and heterotrophic activity were analyzed through multiple regression. The results of multiple regression were as follows. At station 1, total bacteria and heterotrophic bacteria(Z-25) could explain 57% of the variation of maximum uptake velocity for glucose and 54% of turnover time for glucose was explained by total coliform bacteria and MBOD, Sixty four percent of the variation of Kt+SN was accounted for salinity, MBOD-N and inorganic phosphate. Turnover rate for acetate was also accounted for the change of MBOD-P by 56%. At station 2 maximum uptake velocity for glucose depends on MBOD-N by 81%; turnover time on bacteria by 50%; Kt+Sn on avilable nutrient by 61%. More than 50% of maximum uptake velocity and turnover time for glucose were influenced by bacteria and that of Kt+Sn by the change of nutrient in the surface water of station 3. In the bottom water of station 3, the change of maximumuptake velocity, turnover time and Kt+Sn for glucose was controlled by total bacteria and available nutrient, bacteria, the change of nutrient salts respectively. On the whole, more than 50% of maximum uptake velocity and turnover time for glucose could be due to the change in the number of bacetria and the value of Kt+Sn was affected by the change of nutrient salts. Turnover rate for acetate was controlled by available phosphate at station 1 and by bacteria at station 2 and 3, which showed a distinct difference between the environmental factors which govern the rate of glucose and acetate uptake in the Naktong esturine ecosystem. And bacterial communities were controlled by available nutrients at station 1, by nutrient salts and salinity at station 2 and in the surface water of station 3 and by salinity in the bottom water of station 3.

  • PDF

Studies on the Water Purification Using Water Parsley (미나리 (Oenanthe javanica(Blume) DC)를 이용한 수질정화에 관한 연구)

  • 권성환;나규환;류재근;김종택
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.56-63
    • /
    • 1996
  • The results of the water purification studies using water parsley (Oenanthe javanica) were obtained as follows. The removal rate of nutrient salts increased with longer plant growth periods. The results of this study use the assumption, log(T+1) = $K(C_0-C)^A$, based on Prakish's Theory. The initial concentration was calculated from experimental data. A and K are closely related to the initial concentration. It is possible to model the concentration of residual salts, as time goes by, if concentration is constant. It was observed that water parsley neutralizes acid and alkali substances promptly. The maximum suitable neutralization period is 48 hours. But water parsley withered up in strong acid and alkali solutions within a week. The removal efficiency of Cd progresses in 2 steps, which are unrelated to the initial concentration of Cd. The first part of the curve shows the concentration rapid rate of Cd removal, followed by a levelling off. The removal rate of $NO_x-N$ in the sample water tank containing 0.5 ppm Cd was between 50~80% but the removal rate was less than 20% for the higher concentration. On the other hand, increased amounts of $PO_4-P$ in the sample water tank from the third day on suspected that $PO_4-P$ was desorbed from the water parsley. The accumulation efficiency of Cd in plant was increased in proportion to the initial concentration of Cd. The accumulation phenomenon was observed in the tanks more than 50~100 times.

  • PDF

Influence of Natural Salt Treatments on Soil Chemical Properties and Inorganic Contents of Garlic (천일염 살포가 토양 화학성과 마늘(Allium sativum L.)의 무기성분 함량에 미치는 영향)

  • Kim, Myung-Sook;Kim, Yoo-Hak;Kang, Seong-Soo;Yun, Hong-Bae;Gong, Hyo-Young;Lee, Sang-Beom
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.2
    • /
    • pp.231-241
    • /
    • 2012
  • Farming using natural salts for supply of nutrients to crops is increasing recently. It is necessary to evaluate the salt accumulation in soil and the effects on crop growth by treatment of natural salt. This study was conducted at the organic cultivation fields which garlics were planted. The treatments were no natural salts (control) and plots applied 100~600 $kg\;ha^{-1}$ with natural salts. Soil samples were taken from the 0 to 25 cm depth at 12 and 107 day (harvest time) after natural salts application. The results showed that electrical conductivity (EC), exchangeable Na (Exch.$-Na^+$) and Cl- were increased by application of natural salts. But, pH and exchangeable cations ($K^+$, $Ca^{2+}$ and $Mg^{2+}$) had not significantly differences among treatments. In 300 $kg\;ha^{-1}$ plots of natural salt, the level of EC, Exch.$-Na^+$ and $Cl^-$ in top soil (0-5 cm) was were increased more 0.3, 3.7, and 12.7 times than control plot, respectively. EC, Exch.$-Na^+$, and $Cl^-$ were highest in the top 5 cm of soil and decreased with depth at 12 days after natural salts application, but were decreased in the plower layer (0-15cm) at the harvest time because they were leached with natural rain. An increasing the application level of natural salt resulted in increasing of sodium adsorption ratio, exchangeable sodium percentage, and percentage of soil dispersion. The concentration of nutrient uptake such as total nitrogen (T-N), chloride (Cl) in garlic had significant difference between control and plots applied with natural salts The content of T-N of garlic in plots with natural salt application was lower than control plot, but Cl is higher than control plot.

Distribution of Nutritive Salts and Organic Matters in the Coastal Area of East Sea (동해 연안역의 영양염과 유기물질의 분포)

  • Lee, Ki-Sung;Ko, Dong-Kyu;Heo, Seung;Lee, Young-Geun;Choi, Chung-Il;Choi, Young-Gil
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • To investigate the distribution of nutritive salts and organic compounds in six stations at the coastal area of East Sea, environmental factors, nutritive salts, organic matters and chlorophyll were analysed four times from July 1994 to April 1995. The value of BOD in Ulsan Chuyongam was the highest among 6 stations. The concentration of nutritive salts was generally high through the investigation period near Pohang and Ulsan Chuyongam. From the value of dissolved nutrient salts, the Chuyongam area seemed to be under hyper-eutrophication and the Changsengpo area under eutrophication. Suspended particulate matter (SPM) of 3~10${\mu}{\textrm}{m}$ in size was distributed up to 70% of total volume. The amounts of SPM and particulate organic matter (POM) were considerably high in Pohang and Ulsan, which seemed to be resulted from the input of pollutants of cities and factories nearby.

  • PDF

Investigation of Water Quality in the Laver Bed at Yongwon Ri, Changwon Gun During the Spring and Neap Tide in March 1970 (경남 창원군 능동면 용원리 김밭의 수질에 대하여)

  • Won, Chong Hun
    • 한국해양학회지
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 1970
  • The water quality of the laver bed at Yongwon Ri, Changwon Gun was investigated during the spring and neap tide in March 1970. The effect of tide on the contents of various chemical constituents was irregular and the variation ranges of the contents were narrow. The pH value during flood and ebb tide was a constant of 8.2. The chlorosity range varied from 19.15 to 19.33g/l, the difference of 0.18g/l being comparatively small for coastal waters. The nutrient salts contents varied irregulary with the change in tide, but nitrite and soluble iron were not detected. In local distribution, chlorosity and silicate- silicon contents were found to be more at Sts. 1, 2 and 3 in the eastern area than at Sts. 4, 5 and 6 in the western area, wheras nitrate and ammonia contents were found to be more at Sts. 4, 5 and 6. The nitrate content was especially high, being twice as much as that at Sts. 1, 2 and 3 in the eastern area. In the spring tide, chlorosity was found, on the average, to be as much as 0.06g/l higher than in the neap tide, but the contents of nutrient salts were higher in the neap tide, especially the nitrate content was twice as much. When compared with other selected local laver beds, i.e., the tidal flats of the Nackdong and Somjin rivers, and of Wan Do Gun, the chlorosity level was highest but the nutrient salts contents level was, in general, slightly lower and the variation ranges narrow in the laver bed at Yongwon ri. The nitrate content, in particular was one tenth smaller than the others.

  • PDF

Influence of N-P-K Nutrient Levels on Ozone Susceptibility of Tomato Plants (N-P-K 양분 수준이 토마토의 오존 감수성에 미치는 영향)

  • Ahn, Joo-Won;Ku, Ja-Hyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.352-357
    • /
    • 1998
  • This experiment was conducted to find out the effects of major nutrient levels(N, P, K) on ozone susceptibility of tomato plants(Lycopersicon esculentum Mill, cv. Pink Glory). Plants were grown in water culture system. A half-strength of Hoagland's nutrient solution was considered as a standard formulation($N_{100}$ $P_{100}$ $K_{100}$). The levels of major nutrients were adjusted through addition or removal of several fertilizer salts from the standard solution. Top growth was significantly decreased at the low nitrogen level or phosphorus removal condition. P- and K-contents of leaves were greatly decreased by removal of salts containing P and K from the nutrient solution. The rate of ozone injury was significantly increased when potassium was removed. However, the influence of nitrogen and phosphorus levels or high potassium level on injury occurrence did not show statistical significance compared to the standard solution. Ozone exposure resulted in reduction of chlorophyll, and increase of ethylene production, electrolyte leakage and malondialdehyde(MDA) contents. These changes were much more enhanced in plants grown at the potassium removal solution. Whereas the activity of superoxide dismutase(SOD) was low at the potassium removal treatment and this tendency remained after ozone exposure. These results indicated that potassium nutrient level in tomato plants is closely associated with the susceptibility to ozone injury.

  • PDF

Optimized M9 Minimal Salts Medium for Enhanced Growth Rate and Glycogen Accumulation of Escherichia coli DH5α

  • Wang, Liang;Liu, Qinghua;Du, Yangguang;Tang, Daoquan;Wise, Michael J.
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.194-200
    • /
    • 2018
  • Glycogen plays important roles in bacteria. Its structure and storage capability have received more attention recently because of the potential correlations with environmental durability and pathogenicity. However, the low level of intracellular glycogen makes extraction and structure characterization difficult, inhibiting functional studies. Bacteria grown in regular media such as lysogeny broth and tryptic soy broth do no accumulate large amounts of glycogen. Comparative analyses of bacterial media reported in literature for glycogen-related studies revealed that there was no consistency in the recipes reported. Escherichia coli $DH5{\alpha}$ is a convenient model organism for gene manipulation studies with respect to glycogen. Additionally, M9 minimal salts medium is widely used to improve glycogen accumulation, although its composition varies. In this study, we optimized the M9 medium by adjusting the concentrations of itrogen source, tryptone, carbon source, and glucose, in order to achieve a balance between the growth rate and glycogen accumulation. Our result showed that $1{\times}M9$ minimal salts medium containing 0.4% tryptone and 0.8% glucose was a well-balanced nutrient source for enhancing the growth and glycogen storage in bacteria. This result will help future investigations related to bacterial physiology in terms of glycogen function.