DOI QR코드

DOI QR Code

Optimized M9 Minimal Salts Medium for Enhanced Growth Rate and Glycogen Accumulation of Escherichia coli DH5α

  • Wang, Liang (Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University) ;
  • Liu, Qinghua (Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University) ;
  • Du, Yangguang (Xuzhou Center for Disease Control and Prevention) ;
  • Tang, Daoquan (Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University) ;
  • Wise, Michael J. (Computer Science and Software Engineering, University of Western Australia)
  • Received : 2018.04.05
  • Accepted : 2018.06.07
  • Published : 2018.09.28

Abstract

Glycogen plays important roles in bacteria. Its structure and storage capability have received more attention recently because of the potential correlations with environmental durability and pathogenicity. However, the low level of intracellular glycogen makes extraction and structure characterization difficult, inhibiting functional studies. Bacteria grown in regular media such as lysogeny broth and tryptic soy broth do no accumulate large amounts of glycogen. Comparative analyses of bacterial media reported in literature for glycogen-related studies revealed that there was no consistency in the recipes reported. Escherichia coli $DH5{\alpha}$ is a convenient model organism for gene manipulation studies with respect to glycogen. Additionally, M9 minimal salts medium is widely used to improve glycogen accumulation, although its composition varies. In this study, we optimized the M9 medium by adjusting the concentrations of itrogen source, tryptone, carbon source, and glucose, in order to achieve a balance between the growth rate and glycogen accumulation. Our result showed that $1{\times}M9$ minimal salts medium containing 0.4% tryptone and 0.8% glucose was a well-balanced nutrient source for enhancing the growth and glycogen storage in bacteria. This result will help future investigations related to bacterial physiology in terms of glycogen function.

Keywords

References

  1. Wilson WA, Roach PJ, Montero M, Baroja-Fernandez E, Munoz FJ, Eydallin G. et al. 2010. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol. Rev. 34: 952-958. https://doi.org/10.1111/j.1574-6976.2010.00220.x
  2. Wang L, Wise MJ. 2011. Glycogen with short average chain length enhances bacterial durability. Naturwissenschaften 98: 719-729. https://doi.org/10.1007/s00114-011-0832-x
  3. Melendez R, Melendez-Hevia E, Cascante M. 1997. How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building. J. Mol. Evol. 45: 446-455. https://doi.org/10.1007/PL00006249
  4. Chandra G, Chater KF, Bornemann S. 2011. Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157: 1565-1572. https://doi.org/10.1099/mic.0.044263-0
  5. Bourassa L, Camilli A. 2009. Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol. Microbiol. 72: 124-138. https://doi.org/10.1111/j.1365-2958.2009.06629.x
  6. Sambou T, Dinadayala P, Stadthagen G, Barilone N, Bordat Y, Con- stant P. et al. 2008. Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol. Microbiol. 70: 762-774. https://doi.org/10.1111/j.1365-2958.2008.06445.x
  7. Jones SA, Jorgensen M, Chowdhury FZ, Rodgers R, Hartline J, Leatham MP. et al. 2008. Glycogen and maltose utilization by Escherichia coli O157:H7 in the mouse intestine. Infect. Immun. 76: 2531-2540. https://doi.org/10.1128/IAI.00096-08
  8. Martinez-Garcia M, Stuart MC, Van Der Maarel MJ. 2016. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens. Int. J. Biol. Macromol. 89: 12-18. https://doi.org/10.1016/j.ijbiomac.2016.04.051
  9. Preiss J. 1984. Bacterial glycogen synthesis and its regulation. Annu. Rev. Microbiol. 38: 419-458. https://doi.org/10.1146/annurev.mi.38.100184.002223
  10. Dauvillee D, Kinderf IS, Li ZY, Kosar-Hashemi B, Samuel MS, Rampling L. et al. 2005. Role of the Escherichia coli glgX gene in glycogen metabolism. J. Bacteriol. 187: 1465-1473. https://doi.org/10.1128/JB.187.4.1465-1473.2005
  11. Wang L, Liu Z, Dai S, Yan J, Wise MJ. 2017. The sit-and-wait hypothesis in bacterial pathogens: a theoretical study of durability and virulence. Front. Microbiol. 8: 2167. https://doi.org/10.3389/fmicb.2017.02167
  12. Iglesias A, Preiss J. 1992. Bacterial glycogen and plant starch biosynthesis. Biochem. Educ. 20: 196-203. https://doi.org/10.1016/0307-4412(92)90191-N
  13. Fung T, Kwong N, Zwan TVD, Wu M. 2013. Residual glycogen metabolism in Escherichia coli is specific to the limiting macronutrient and varies during stationary phase. J. Exp. Microbiol. Immunol. 17: 83-87.
  14. Suzuki E, Umeda K, Nihei S, Moriya K, Ohkawa H, Fujiwara S. et al. 2007. Role of the GlgX protein in glycogen metabolism of the cyanobacterium, Synechococcus elongatus PCC 7942. Biochim. Biophys. Acta 1770: 763-773. https://doi.org/10.1016/j.bbagen.2007.01.006
  15. Wang L, Regina A, Butardo VM, Jr., Kosar-Hashemi B, Larroque O, Kahler CM. et al. 2015. Influence of in situ progressive N-terminal is still controversial truncation of glycogen branching enzyme in Escherichia coli $DH5{\alpha}$ on glycogen structure, accumulation, and bacterial viability. BMC Microbiol. 15: 96. https://doi.org/10.1186/s12866-015-0421-9
  16. Kostylev M, Otwell AE, Richardson RE, Suzuki Y. 2015. Cloning should be simple: Escherichia coli $DH5{\alpha}$-mediated assembly of multiple DNA fragments with short end homologies. PLoS One 10: e0137466. https://doi.org/10.1371/journal.pone.0137466
  17. Morin M, Ropers D, Cinquemani E, Portais JC, Enjalbert B, Cocaign-Bousquet M. 2017. The Csr system regulates Escherichia coli fitness by controlling glycogen accumulation and energy levels. MBio 8: e01628-17.
  18. Varik V, Oliveira SR, Hauryliuk V, Tenson T. 2016. Composition of the outgrowth medium modulates wake-up kinetics and ampicillin sensitivity of stringent and relaxed Escherichia coli. Sci. Rep. 6: 22308. https://doi.org/10.1038/srep22308
  19. Boehm A, Arnoldini M, Bergmiller T, Roosli T, Bigosch C, Ackermann M. 2016. Genetic manipulation of glycogen allocation affects replicative lifespan in E. coli. PLoS Gen. 12: e1005974. https://doi.org/10.1371/journal.pgen.1005974
  20. Montero M, Rahimpour M, Viale AM, Almagro G, Eydallin G, Sevilla A. et al. 2014. Systematic production of inactivating and non-inactivating suppressor mutations at the relA locus that compensate the detrimental effects of complete spot loss and affect glycogen content in Escherichia coli. PLoS One 9: e106938. https://doi.org/10.1371/journal.pone.0106938
  21. Yamamotoya T, Dose H, Tian Z, Faure A, Toya Y, Honma M. et al. 2012. Glycogen is the primary source of glucose during the lag phase of E. coli proliferation. Biochim. Biophys. Acta 1824: 1442- 1448. https://doi.org/10.1016/j.bbapap.2012.06.010
  22. Eydallin G, Montero M, Almagro G, Sesma MT, Viale AM, Munoz FJ. et al. 2010. Genome-wide screening of genes whose enhanced expression affects glycogen accumulation in Escherichia coli. DNA Res. 17: 61-71. https://doi.org/10.1093/dnares/dsp028
  23. Montero M, Eydallin G, Viale AM, Almagro G, Munoz FJ, Rahim- pour M. et al. 2009. Escherichia coli glycogen metabolism is con- trolled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly intercon- nected with a wide variety of cellular processes. Biochem. J. 424: 129-141. https://doi.org/10.1042/BJ20090980
  24. Eydallin G, Viale AM, Moran-Zorzano MT, Munoz FJ, Montero M, Baroja-Fernandez E. et al. 2007. Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12. FEBS Lett. 581: 2947-2953. https://doi.org/10.1016/j.febslet.2007.05.044
  25. Kozlov G, Elias D, Cygler M, Gehring K. 2004. Structure of GlgS from Escherichia coli suggests a role in protein-protein interactions. BMC Biol. 2: 10. https://doi.org/10.1186/1741-7007-2-10
  26. Dedhia NN, Hottiger T, Bailey JE. 1994. Overproduction of glycogen in Escherichia coli blocked in the acetate pathway improves cell growth. Biotechnol. Bioeng 44: 132-139. https://doi.org/10.1002/bit.260440119
  27. Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM. 1993. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol. 175: 4744- 4755. https://doi.org/10.1128/jb.175.15.4744-4755.1993
  28. Okita TW, Rodriguez RL, Preiss J. 1981. Biosynthesis of bacterial glycogen. Cloning of the glycogen biosynthetic enzyme structural genes of Escherichia coli. J. Biol. Chem. 256: 6944-6952.
  29. Alonso-Casajus N, Dauvillee D, Viale AM, Munoz FJ, Baroja-Fernandez E, Moran-Zorzano MT. et al. 2006. Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J. Bacteriol. 188: 5266-5272. https://doi.org/10.1128/JB.01566-05
  30. Chen G, Strevett KA. 2003. Impact of carbon and nitrogen conditions on E-coli surface thermodynamics. Colloids Surf. B Biointerfaces 28: 135-146. https://doi.org/10.1016/S0927-7765(02)00143-1
  31. Ariffin H, Hassan MA, Shah UKM, Abdullah N, Ghazali FM, Shirai Y. 2008. Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J. Biosci. Bioeng. 106: 231-236. https://doi.org/10.1263/jbb.106.231
  32. Mittal N, Budrene EO, Brenner MP, Van Oudenaarden A. 2003. Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. USA 100: 13259-13263. https://doi.org/10.1073/pnas.2233626100
  33. Lo Leggio L, Ernst HA, Hilden I, Larsen S. 2002. A structural model for the N-terminal N1 module of E-coli glycogen branching enzyme. Biologia 57: 109-118.
  34. Hilden I, Leggio LL, Larsen S, Poulsen P. 2000. Characterization and crystallization of an active N-terminally truncated form of the Escherichia coli glycogen branching enzyme. Eur. J. Biochem. 267: 2150-2155. https://doi.org/10.1046/j.1432-1327.2000.01221.x
  35. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. https://doi.org/10.1073/pnas.120163297

Cited by

  1. Molecular Structure of Glycogen in Escherichia coli vol.20, pp.7, 2019, https://doi.org/10.1021/acs.biomac.9b00586
  2. Glycogen Metabolism Impairment via Single Gene Mutation in the glgBXCAP Operon Alters the Survival Rate of Escherichia coli Under Various Environmental Stresses vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.588099
  3. Effects of NaCl Concentrations on Growth Patterns, Phenotypes Associated With Virulence, and Energy Metabolism in Escherichia coli BW25113 vol.12, pp.None, 2018, https://doi.org/10.3389/fmicb.2021.705326