• Title/Summary/Keyword: nutrient -solution

Search Result 773, Processing Time 0.028 seconds

Effects of Nutrient Solution Strength and Arbuscular Mycorrhizal Fungi on Growth and Flowering of Potted Miniature Rose in Ebb and Flow System (저면관수 시스템에서 배양액 농도와 Arbuscular 균근균 처리가 분식 미니 장미의 생육 및 개화에 미치는 영향)

  • 이범선;이인호;지성희;손보균;조자용;강종구
    • Journal of Bio-Environment Control
    • /
    • v.13 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • Objective of this research was to evaluate the effects of nutrient solution strength and Arbuscular Mycorrhizal Fungi (AMF, Glomus sp.) on growth and flowering of potted miniature rose (Rosa hybrids L. cv 'Scarlet'). To achieve this, plants cultured with six different strength of Japanese Horticultural Experiment Station solution (0.125, 0.25, 0.5, 1.0, 2.0, and $4.0\;{\times}\;{full}$ strength) and inoculated with AMP at cutting and transplanting. Leachate EC increased as solution strength were elevated. The leachate EC were not different between non-inoculated plants and AMF treatment at cutting, but significantly decreased when plants were inoculated with AMF at transplanting. The elevated strength of nutrient solution resulted in decrease of leachate pH. When plants were inoculated AMF at transplanting, leachate pH was lower than those of non-inoculated plants and inoculated with AMF at cutting. At harvesting (93 days after transplanting), plant height, leaf width, number of branches and shoot fresh and dry weight of rose 'Scarlet' increased with elevated nutrient solution strength. AMF treatment at transplanting of potted rose 'Scarlet' showed the best results in growth such as chlorophyll content, number of flowers, and shortening the days required to flower. The content of N, P, K, and Mn in leaf tissue of potted rose increased by elevated nutrient solution strength and AMF treatment, while the tissue Na contents decreased by an AMF treatment.

Growth Responses of Various Ornamental Foliage Plants to Nutrient Solution Strength (양액농도에 따른 관엽식물의 생육반응)

  • Shim, Myung-Syun;Kwon, Oh-Keun
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.210-216
    • /
    • 2010
  • This study was carried out to investigate the plant growth of various foliage plants affected by the nutrient solution strength. Ficus benjamina, Hedera helix, Philodendron tatei, Rhapis excelsa, Spathiphyllum spp. were used in this experiment. The Sonneveld solution was diluted to 0, 1/4, 1/2, and 1 folds and applied through a subirrigation system. Plant height and width, leaf number, leaf area, fresh and dry weights of shoots were measured to compare the responses to the different treatments. The required amounts for nutrients were different among the various foliage plants. The growth of Ficus and Philodendron was improved as the nutrient solution strength got higher, but that of Hedera and Spathiphyllum showed the best growth in the lower nutrient solution strength of 1/4 and 1/2 folds. The growth of Rhapis was improved in the nutrient solution strength of 1 fold but the other treatments did not affect on plant growth. N, P, and K were the most important nutrients that had influence on the growth of the foliage plants in this study. There was not an accurate criterion for fertilization and irrigation to each foliage plant. Moreover, the foliage plants grew slowly during the early stage and this period must be shortened for commercial production. Therefore, the experiment was executed to make up these defects. The plants applied with proper strength of Sonneveld solution grew faster and had better quality.

Effects of Ca : K Ratios in Nutrient Solution on Photosynthesis, Transpiration, Growth and Incidence of Tipburn in Butterhead and Leaf Lettuce. (배양액내 Ca : K 비율이 상추의 광합성, 증산, 생육 및 tipburn 발생에 미치는 영향)

  • 배종향;이용범;최기영
    • Journal of Bio-Environment Control
    • /
    • v.8 no.1
    • /
    • pp.42-48
    • /
    • 1999
  • This study was executed to see the effects of Ca : K ratios in me.L$^{-1}$ -0:9, 1.5:7.5, 3:6, 4.5:4.5, 6:3 - in the nutrient solution on the photosynthesis, transpiration, growth and incidence of tipburn in butterhead ‘Omega’and Leaf ‘Grand Rapids’lettuce (Lactuca sativa. L) grown in nutrient film technique(NFT). The photosynthesis of both lettuces showed high in the Ca : K ratios of 3:6 and 4.5:4.5 regardless of species. But stomatal resistance of Grand Rapids was higher than that of Omega. The highest transpiration rate of them was shown in the Ca : K ratio of 3:6. The transpiration rate of developing leaves was lower than that of expanded leaves. It was seemed to have relation with incidence of tipbum in the developing leaves. The nutrient solution treatment without Ca developed less growth than that of other treatments, especially growth and development of apical part were inhibited, so that in the both of them incidence of tipburn appeared 100 percent. The incidence of tipburn in Omega appeared 25 percent in the Ca/K ratio of 1.5:7.5, but Grand Rapids did not show it according to the Ca/K ratio in nutrient solution. The highest growth in two species was also shown in the Ca/K ratio of 3:6 except nutrient solution without Ca. This study suggested that the unbalanced ratio of Ca/K affected Ca transport in two species because of the increase of stomatal resistance and diffusive resistance and the decrease of photosynthesis and transpiration.

  • PDF

Effect of the Concentration of Nutrient Solution on Early Yield and Fruit Quality of Tomato(Lycopersicon esculentum Mill.) in Substrate Culture (고형배지경에서 배양액농도가 토마토의 초기수량 및 품질에 미치는 영향)

  • 노미영;배종향;이용범;박권우;권영삼
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.68-73
    • /
    • 1995
  • This study was carried out to investigate the effect of the concentration of nutrient solution on growth of tomato(Lrcopersicon esculentum Mill. cv. seokwang) in substrate culture. The substrates used in the experiment were perlite, vermiculite, and peatmoss. Tomato plants were treated with different concentrations of nutrient solution, viz. 0.5, 1.0, 2.0, 3.0, and 5.0mS/cm at seedling stage and transferred to different treatments, 1.0, 2.0, and 3.0mS/cm after transplanting in each substrate. Total fruit number, total yield, marketable fruit number, and marketable yield were much higher at 2.0-3.0mS/cm than at 1.0mS/cm in all three substrate culture. The percentage of malformed fruit was in order of peatmoss>perlite> vermiculite and Vitamin C content was vermiculite> perlite> peatmoss. In all three substrate culture, high marketable yield was shown when tomato plants grew with concentration of 2.0-5.0mS/cm at seedling stage and 2.0-3.0mS/cm after transplanting. The concentrations of nutrient solution after transplanting as well as at seedling stage had a great influence on total yield, marketable yield, and soluble solids. However total and marketable fruit number were considerably affected by the concentrations of nutrient solution after transplanting.

  • PDF

Effects of Changes of Nutrient Solution Concentration According to Growth Stage on Growth and Flowering of Cut Chrysanthemum Grown Hydroponically in Perlite (국화의 펄라이트 양액재배시 생육단계에 따른 양액농도의 변화가 생육과 개화에 미치는 영향)

  • Ji, Eun Young;Oh, Wook;Kim, Sun Hwa;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.16 no.2
    • /
    • pp.247-250
    • /
    • 1998
  • This study was carried out to investigate the effects of changes of ionic strength according to growth stage on growth and flowering of Dendranthema grandiflorum (Ramat.) Kitamura 'Seiun' grown hydroponically in perlite. The stage I, II, and III covered early vegetative growth (27-40 days after planting), latter vegetative growth (41-54 days), and reproductive growth (55-80 days), respectively. The 2 strength (1S and 2S) of nutrient solution were treated in stage I, whereas 3 strengths (1S, 1-2S, and 2S) were treated in stage II. Then, total 9 treatments in stage III were designated by 3 treatments (tap water, 1S, and 2S) for each 3 strengths in stage II. Each nutrient solution was applied 8 times per day. At vegetative growth stage (54 days after planting), stem length was highest when irrigated 8 times a day with 1S nutrient solution. Both photosynthesis and transpiration rate were higher in 1S than those in other treatments (1-2S, 2S), whereas leaf chlorophyll content was highest in 2S treatment. Ion content of plant treated with 2S was higher than other treatments. Growth (plant height, leaf area, stem length), fresh weight, and dry weight of each plant organ after flower bud formation were better in tap water treatment (1-1-0) than other 1S treatments (1-1-1, 1-1-2). Regarding the number of days to flowering, tap water treatment was the most effective. Thus, after flower bud formation supplying tap water or lower concentration of nutrient solution than those used during the vegetative growth stage was economical in saving chemical fertilizers, shortening the number of days to flowering, reducing salt accumulation in media, saving efforts of leaching, and reducing ground water contamination.

  • PDF

Effect of the Mixed Treatment of Electrolyzed Micronutrients with Nutrient Solution and SCB Slurry on Mineral Content and Growth of Cherry Tomatoes (Lycopersicon esculentum) (양액과 SCB액비 처리에 미량요소 첨가가 방울토마토의 미네랄 함량과 생육에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.385-397
    • /
    • 2012
  • A pot experiment was carried out to examined the effect of electrolyzed micronutrients (Fe, Mn, Zn, Sr, Se, Sn, Co, Ti, and V) solution treatments with nutrient solution and SCB slurry on the mineral content and growth of tomato in cherry tomato (Lycopersicon esculentum). The treatment of nutrient solution (NS)+micronutrients solution (MS) significantly increased the concentrations of Li, Zn, Sr, Se, Ti as compared with that of NS alone in the cherry tomato fruits, and SCB+MS solution treatment significantly increased Li, Zn, Se, Co, Sr, and Ti contents as compared with SCB treatment. The micronutrient contents of MN+SCB+MS treatment were significantly higher in Li, Zn, Se, Co and in Ti than those of SCB and NS treatment, respectively. The growth and yield of cherry tomato fruits was highest with NS treatment. The yield indices of cherry tomato treated with NS+MS treatment and SCB+NS+MS were 97% and 94% of NS treatment. In conclusion, it seems to be possible to produce micronutrient-fortified cherry tomato by the mixed treatment of electrolyzed micronutrients.

Effects of Diurnal Alternation of Nutrient Solution Salinity on Growth and Fruit Quality of Tomatoes Hydroponically Grown in NFT System (NFT 수경재배시스템에서 주/야 양액농도변환이 토마토의 생육 및 품질에 미치는 영향)

  • Kim Ki-Deog;Lee Eung-Ho;Lee Jae-Wook;Lee Byoung-Yil;Son Jung-Eek;Chun Chang-Hoo
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.53-68
    • /
    • 2006
  • This experiment was conducted to investigate the effects of diurnal alternation of nutrient solution salinity on growth and fruit quality of tomatoes (Lycoperisicon esculentum cv. 'House momotaro') hydroponically grown in root intercept bag-NFT (RIB-NFT) system. Plant height was the lowest in the high concentration during daytime (6/1 $dS\;m^{-1}$, day/night). Yield was very high in the concentration of 1/1 $dS\;m^{-1}$, it decreased with increasing the concentration of nutrient Yield was higher at low concentration (4/1 $dS\;m^{-1}$) at nighttime compared to the same concentration (4/4 $dS m^{-1}$) at daytime and nighttime, and the reverse (1/4 $dS\;m^{-1}$) was similar to the control (perlite culture). Yield was greatly reduced by higher concentration at daytime than nighttime, and the decrease was alleviated by lower concentration at nighttime. With increasing the concentration of nutrient solution during daytime, sugar content of tomato fruit was increased, but yield was decreased. In the other experiment, tomato plants were hydropoically cultured in NFT system diurnally alternated between Aichi's solution and $Ca(NO_3)_2$ solution. $Ca(NO_3)_2$ solution was supplied for 4 hours from 10:00 to 14:00 at daytime and from 22:00 to 2:00 at nighttime, respectively, and Aichi's solution was supplied for the time except the 4 hours. Ca content of leaves and sugar content of fruit were increased by supplying $Ca(NO_3)_2$ solution at daytime compared to nighttime, but plant growth was greatly suppressed by supplying $Ca(NO_3)_2$ solution with the concentration of 4 $dS\;m^{-1}(4/4^{Ca}\;dS\;m^{-1})$ at nighttime.

A Study on the Effect of Plants Growth on Eco Wood Pots (국산 낙엽송으로 제조한 에코우드포트(Eco Wood pots)의 식물 생장 효과에 관한 연구)

  • Oh, Geun Hye;Kim, Hee-jin;Yang, Seong-min;Nam, Jeong Bin;Kang, Seog-goo
    • Journal of the Korea Furniture Society
    • /
    • v.29 no.1
    • /
    • pp.18-23
    • /
    • 2018
  • The purpose of this study was to develop wood pots for create Optimum environment of plant growth using unused wood. to prove this, we examined the effects of cycle of water supply and nutrient concentration in wood pots on plant germination rate and growth factors (leaf number, stem diameter and length). The results are as follows. 1) The growth rate was higher at once of 2 days watering period. This suggests that the growth of the plants was better than that of the less water because the larch pots itself has the water retention capacity inside. 2) Germination rate and growth rate were better than other treatment groups when the concentration of nutrient solution was 0.5%. 3) Nitrogen, available phosphoric acid, and potassium showed higher contents than the nutrient - treated soil at 0.5% concentration of nutrient solution. This indicates that the nutrient solution absorbed from the larch affected the soil and plant growth in the inside.

  • PDF

Effect of Nutrient Solution Composition Modification on the Internal Quality of Some Leaf Vegetables in Hydroponics (수경재배시 양액 조성 처리가 몇가지 엽채류의 내적 품질에 미치는 영향)

  • Kang, Ho-Min;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.348-351
    • /
    • 2007
  • This study was conducted to find out the change of infernal quality, such as vitamin C and nitrate contents in some leaf vegetables grown hydropoincally in different nutrient conditions. Pak-choi (Brassica camperistis L. spp. chinesis Jusl.), chungchima (Lactuca sativa L. var. crispa cv. Chungchima) and romaine (Lactuca sativa L. var. longifolia Lam.) lettuces were cultivated for 2 weeks in 4 different nutrient solutions, such as tap water; no-nutrient, added $NH_4$, discarded $NO_3$, and supplied Yamazaki' solution for lettuce as a control. The growth of leaf vegetables was not different among nutrient solution treatments except tap water. The nitrate content showed the highest in control, and followed by $+NH_4$ treatment, $-NO_3$ and tap water treatment, regardless of kind of vegetables. The vitamin C content in 3 different vegetables showed the opposite result against nitrate content so that the treatment that showing the highest vitamin C content was tap water in romaine and chungchima lettuces, and $-NO_3$ treatment in pak-choi. The vitamin C and the nitrate content showed high correlations; $r=-0.614^*$ in pak-choi, $-0.651^*$ in romaine lettuce, and $-0.804^{**}$ in chungchima lettuce.

Biocontrol of Korean Ginseng Root Rot Caused by Phytophthora cactorum Using Antagonistic Bacterial Strains ISE13 and KJ1R5

  • Sang, Mee-Kyung;Chiang, Mae-Hee;Yi, Eun-Seob;Park, Kuen-Woo;Kim, Ki-Deok
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.103-106
    • /
    • 2006
  • In this biocontrol research, we evaluated disease suppressive effects of antagonistic bacterial strains ISE13 and KJ1R5 against Korean ginseng root rot caused by P. eaetorum. We also examined the effects of nutrient solution in the hydroponic culture system for Korean ginseng on biological activity of the bacterial strains. As results of dual culture tests of the bacterial strains on $V_{8}$ juice agar, the strain ISE13 showed antifungal activity against P. eaetorum and other plant pathogenic fungi, but the strain KJ1R5 did not. When their inhibitory effects against infection of P. eaetorum on the roots grown in either nutrient solution or water were tested, the strains ISE13 and KJ1R5 inhibited the disease severity of Korean ginseng roots only grown with water, compared to buffer-treated, inoculated controls. However, the nutrient solution used for hydroponic cultures of ginseng in pots caused higher levels of disease severity by the strains ISE13 and KJ1R5 from 418.8\%$ to 40.0\%$ and from 24.3\%$ to 45.0\%$, respectively. In this study, the bacterial strains ISE13 and KJ1R5 could be potentially biocontrol agents to suppress Korean ginseng root rot caused by P. eaetorum. However, more attention using nutrient solution in hydroponic cultures for Korean ginseng production should be applied in biocontrol of plant diseases using the antagonistic microorganisms.