• Title/Summary/Keyword: numerical water quality model

Search Result 147, Processing Time 0.022 seconds

Wave Attenuation due to Water-Front Vegetation (수변식생에 의한 파랑감쇠 특성)

  • Lee, Seong-Dae
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.341-347
    • /
    • 2008
  • Recently, it has been widely recognized that water-front and coastal vegetations may have great value in supporting fisheries, protecting from wave attack, stabilizing the sea bed and maintaining good scenery. Hydrodynamic factors playa major role in the functions of water quality and ecosystems. However, the studies on numerical and analytical process of wave propagation are few and far behind compared to those on the hydrodynamic roles of water-front vegetations. In this study, in order to express wave attenuation into water-front vegetation, a numerical model based on the unsteady mild slope equation is developed. This result is compared with an analytical model for describing the wave attenuation by assumed simple long wave condition. Based on both the analytical and numerical results, the physical properties of the wave attenuation are examined under various wave, geometric and vegetation conditions. Through comparisons between the analytical and numerical results, the effects of the vegetation properties, wave properties and model parameters such as the momentum exchange coefficient have been clarified.

The Effect and Application of Flow Induction Machine in Artificial Canal Way and Lake through Water Quality Model Test (수질모형실험을 통한 인공수로와 호수에서 흐름유발시설 효과검증 및 적용방법에 관한 연구)

  • Choi, Gye-Woon;Kim, Dong-Eon;Yoon, Geun-Ho;Han, Man-Shin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.477-486
    • /
    • 2011
  • The objective of this study is to investigate the water pollution problems brought about by the construction of eco-friendly waterfront space through the physical model experiment including water quality consideration. Due to the lack of water supply into the artificial ponds and canals, the water quality problems such as eutrophication, odor and so on can be occurred. There have been many numerical models on such phenomena but limited studies using physical test due to the difficulty in the verification of physical interpretation of the study area. In this study, a prototype model that is not affected by the dimensionless parameters was carried out, where unpolluted water is mixed into the contaminated water to reduce the concentration of nutrients. In addition, this study also attempt to find the optimal configuration of the flow induction machines using the scale model which will evaluate and verify the effectiveness of the enforcement methods to maintain the water quality objectives.

Simulation of Velocity Distribution in the Lake "Paldang" using the RMA-2 Model (수리모형(RMA-2)을 이용한 팔당호의 유속분포 모의실험)

  • Shin, Dong-Seok;Kwun, Soon-Kuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 1999
  • A numerical model of flow velocity in the standing water system is presented. This model(RMA-2), based on the 2-dimensional unsteady momentum and continuity equations, uses finite element techniques to simulate the distribution of velocity over a spatial location of lakes. The present model represents an improvement over existing numerical water quality models in that it can model the unsteady state and can, therefore, cope with time with a spatial location of standing waters such as lakes and large reservoirs. The model thus allows the engineer to do more accurate estimation of water flows and thus water qualities in standing waters where directions and velocities of the flow become more important for the simulation of the water quality than in running waters. Tests for the data collected in the lake "Paldang" indicates that the model works well under limited circumstances. However, to be more accurate estimation of velocity with the present model, accumulation of data for the measurement of velocities and renovation of geometrical conditions of the lake would be needed.

  • PDF

An experimental study on the effect of deterioration of drainage system on tunnel structures (배수시스템 수리기능저하가 터널구조물에 미치는 영향에 대한 실험적 연구)

  • Kwon, Oh-Yeob;Shin, Jong-Ho;Yang, Yu-Hong;Joo, Eun-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.970-979
    • /
    • 2006
  • Construction of underground structure requires higher standard of planning and design specifications than in surface construction. However, high construction cost and difficult working environment limit design level and construction quality. One of the most sensitive factors to be considered are infiltration and external pore-water pressures. Development of pore-water pressure may accelerate leakage and cause deterioration of the lining. In this paper, the development of pore-water pressure and its potential effect on the linings are investigated using physical model tests. A simple physical equipment model with well-defined hydraulic boundary conditions was devised. The deterioration procedure was simulated by controlling both the permeability of filters and flowrate. Development of pore-water pressure was monitored on the lining using pore pressure measurement cells. Test results identified the mechanim of pore-water pressure development on the tunnel lining which is the effect of deterioration of drainage system. The laboratory tests were simulated using coupled numerical method, and shown that the deterioration mechanism can be reproduced using coupled numerical modelling method.

  • PDF

A Study on the Numerical Model of Current of Strafication Considering the Topographic Heat Accumulation Effect in the Coastal Area (해역에서의 지형성 저열효과를 고려한 성층유동 수치모델에 관한 연구)

  • Yoon, Jung-Sung;Kim, Myoung-Kyu;Han, Dong-Jing;Kim, Ga-Ya
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.61-68
    • /
    • 2008
  • In Jinhae-Masan bay, a typical semi-dosed bay in Korea, the water quality is severely deteriorated because of the dosed topographic character and the inflow of nutrients from the land. There have been attempts to apply a water quality model dealing with the entrophication phenomenon and the oxygen-deficient mass in the bay in summer, but there have been few examples of models that have considered the phenomenon of stratification in the proper order, and then it is performed the model of water quality. Therefore, this study collected and analyzed the pre-observed water temperature data from Jinhae-Masan bay in summer and then constructed a density model using the topographic heat accumulation effect and inflow from the river to examine the temperature stratification. The simulation results show that this model could demonstrate the temperature stratification in the Jinhae-Masan bay very well.

Water Quality Modeling for Intake Station by 2-dimensional Advection-Dispersion Model (2차원 이송-확산 모형을 이용한 취수장 유입 수질 예측)

  • Kim, Jae-Dong;Kim, Ji-Hoon;Kim, Young-Do;Song, Chang-Geun;Seo, Il-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.667-679
    • /
    • 2011
  • In this study, the influences of pollutant from Dae-po Stream and So-gam Stream located at the downstream of Nak-dong River on the water quality at Mul-geum water intake station were analyzed using RAMS model. Field measurements of velocity by ADCP, and water quality distribution of BOD and TP by water sampling were carried out to present the input and verification data for numerical simulations. The comparison between RAM2 and ADCP measurement, which aimed for the analysis of 2-D velocity distribution around Mul-geum water intake station showed that two results matched well along the spanwise direction. The prediction of pollutant concentration by RAM4 agreed fairly well with the measured data except for the points nearby right banks in the vicinity of tributary pollutant source. Flushing effect by the increase of mainstream discharge in Nak-dong River was analyzed to provide the damage mitigation in preparation for the accidental water pollution. With increasing mainstream discharge, high velocity and increased water quantity induced increasing dilution effect, thereby decreasing the inflow pollutant concentration rapidly.

Analysis of Analytical Models and Numerical Model for Evaluating Induced Infiltration Rate (유도침투량의 정량화를 위한 해석모형과 수치모형의 분석)

  • Lee, Do-Hun;Lee, Eun-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.301-310
    • /
    • 1999
  • In this paper a numerical model and two analytical models in the hydraulically connected stream-aquifer system were analyzed to compare the induced infiltration rate curves derived from each model. And we also examined the effects of anisotropy of hydraulic conductivity and the direction of the ambient ground water flow on the quantification of the induced infiltration rate. The induced infiltration rate curve determined by models is very simple and useful for estimating the induced infiltration rate since it contains only four physical variables such as the induced infiltration rate, the pumping rate, the distance between the pumping well and the stream, and the ambient ground water flow rate. Under the conditions tested in this paper the induced infiltration rate curves resulted from the Wilson's analytical model and FEWA numerical model were in good agreement, and the anisotropic ratio of hydraulic conductivity was evaluated as a physical factor which influences the behaviour of the induced infiltration rate curve. The methods and results of the paper might Icad to improve the understanding of the induced infiltration phenomenon and can be applied to the planning and disign of pumping well and the optimal determination of the induced infiltration rate and pumping rate for water quality management of the water supply wells.

  • PDF

Assessing the Influence Radius of a Water Treatment System Installed in a Reservoir Using Tracer Experiment and 3D Numerical Simulation (추적자 실험 및 3차원 수치모의를 이용한 저수지 수처리 장치의 영향반경 평가)

  • Park, Hyung Seok;Lee, Eun Ju;Ji, Hyun Seo;Choi, Sun Hwa;Chun, Se Woong
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.3-12
    • /
    • 2018
  • The objective of this study was to evaluate the radius of influence of effluent of water treatment system developed for the purpose of improvement of reservoir water quality using fluorescent dye (Rhodamine-WT) tracer experiment and 3-D numerical model. The tracer experiment was carried out in a medium-sized agricultural reservoir with a storage capacity of $227,000m^3$ and an average depth of 1.6 m. A guideline with a total length of 160 m was installed at intervals of 10 m in the horizontal direction from the discharge part, and a Rhodamine measurement sensor (YSI 6130, measurement range $0-200{\mu}g/L$) was used to measure concentration changes in time, distance, and depth. Experimental design was established in advance through Jet theory and the diffusion process was simulated using ELCOM, a three dimensional hydraulic dynamics model. As a result of the study, the direct effect radius of the jet emitted from the applied water treatment system was about 50-70 m, and the radius of physical effect by the advection diffusion was judged to be 100-120 m. The numerical simulations of effluent advection-diffusion of the water treatment system using ELCOM showed very similar results to those of the impact radius analysis using the tracer experiment and jet flow empirical equations. The results provide valuable information on the spatial extent of the water quality improvement devices installed in the reservoir and the facility layout design.

Comparison of MODIS Land Surface Temperature and Inland Water Temperature (내륙 수온과 MODIS 지표 온도 데이터의 비교 평가)

  • Na, Yu-Gyung;Kim, Juwon;Lim, Eunha;Park, Woo Jung;Kim, Min Jun;Choi, Jinmu
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.2
    • /
    • pp.352-361
    • /
    • 2013
  • This paper aims to analyze the root mean square errors of MODIS LST data and inland water temperature measurement data in order to use MODIS LST data as an input of numerical weather prediction model. MODIS LST data from July 2011 to June 2012 were compared to water temperature measurement data in the automated water quality measurement network. MODIS data have two composites: day-time and night-time. Monthly errors of day-time and night-time LST range $2{\sim}8^{\circ}C$ and $3{\sim}12^{\circ}C$, respectively. Temporally, monthly errors of day-time LST are less in fall and those of night-time LST are less in summer. Spatially, on the four major rivers including the Han, Nakdong, Geum, and Yeongsan rivers, the errors of Yeongsan river were the smallest, which location is the south-most among them. In this study, the errors of MODIS LST as an input of numerical weather prediction model were analyzed and the results can be used as an error level of MODIS LST data for inaccessible areas such as North Korea.

  • PDF

Optimum Sewage Discharge Strategy for Coastal Waters

  • Kang, Yun-Ho;Lee, Moon-Ock
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.97-106
    • /
    • 2001
  • To improve the water quality, particularly for sea bathers, the behaviour of wastewater from sewage outfalls in water adjacent to Swansea, UK, was studied using a mathematical model. The water quality in the sewage receiving basin was determined using factors like the outfall diffuser location(distance from land boundary), sewage treatment scheme, discharge time, and bacteria decay rate, etc. With respect to these factors, an optimal strategy for sewage discharge was then investigated to minimize bacteria levels along the bathing beaches. As water quality criteria, predicted faecal coliform levels were monitored along the coast adjacent to the outfall locations. The resultant values were compared with EC Mandatory(<2000, 95 % of 20 samples) and Guideline Standards(< 100, 80 % of 20 samples). For the advective-diffusion equation, the non linear advective terms were represented using the ULTIMATE algorithm and the third-order accurate QUICKEST scheme to avoid numerical diffusion. Details of the simulation results are then presented as an optimal policy for sewage discharge in the region.

  • PDF