• 제목/요약/키워드: numerical range

검색결과 2,405건 처리시간 0.027초

대기오염모델에서의 이류방정식에 대한 수치적 방법의 비교 (A Comparison of Numerical Methods for the Advection Equation for Air Pollution Models)

  • 심상규;박영산
    • 한국대기환경학회지
    • /
    • 제8권3호
    • /
    • pp.162-168
    • /
    • 1992
  • Numerical solutions to the advection equations used for long-range transport air pollution models are calculated using three numerical methods; Antidiffusion correction method(Smolarkiewicz, 1983), Positive definite advecton scheme obtained by nonlinear renormalization of the advective fluxes(Bott, 1989), and Positive definite pseudospectral method(Bartnicki, 1989). Accuracy, numerical diffusion and computational time requirement are compared for two-dimensional transport calculations in a uniform rotational flow field. The solutions from three methods are positive definite. Bartnicki(1989)'s method is most conservative but requires approximately 10 times as much computational time as Smolarkiewicz(1983)'s method of which numerical diffusion is the largest. All three methods are more conservative for a cone shape initial condition than for a rectangular block initial condition with a steep gradient.

  • PDF

Experimental and numerical identification of flutter derivatives for nine bridge deck sections

  • Starossek, Uwe;Aslan, Hasan;Thiesemann, Lydia
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.519-540
    • /
    • 2009
  • This paper presents the results of a study into experimental and numerical methods for the identification of bridge deck flutter derivatives. Nine bridge deck sections were investigated in a water tunnel in order to create an empirical reference set for numerical investigations. The same sections, plus a wide range of further sections, were studied numerically using a commercially available CFD code. The experimental and numerical results were compared with respect to accuracy, sensitivity, and practical suitability. Furthermore, the relevance of the effective angle of attack, the possible assessment of non-critical vibrations, and the formulation of lateral vibrations were studied. Selected results are presented in this paper. The full set of raw data is available online to provide researchers and engineers with a comprehensive benchmarking tool.

Numerical analysis of a new SMA-based seismic damper system and material characterization of two commercial NiTi-alloys

  • Olsen, J.S.;Van der Eijk, C.;Zhang, Z.L.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.137-152
    • /
    • 2008
  • The work presented in this paper includes material characterisation and an investigation of suitability in seismic dampers for two commercially available NiTi-alloys, along with a numerical analysis of a new damper system employing composite NiTi-wires. Numerical simulations of the new damper system are conducted, using Brinson's one-dimensional constitutive model for shape memory alloys, with emphasis on the system's energy dissipation capabilities. The two alloys tested showed some unwanted residual strain at temperatures higher than $A_f$, possibly due to stress concentrations near inclusions in the material. These findings show that the alloys are not ideal, but may be employed in a seismic damper if precautions are made. The numerical investigations indicate that using composite NiTi-wires in a seismic damper enhances the energy dissipation capabilities for a wider working temperature range.

참치 선망어선의 선형개발을 위한 조파저항의 수치해석 (Numerical Analysis on the Wave Resistance for Development of Ship`s From of Tuna Purse Seiner)

  • 김인철
    • 수산해양기술연구
    • /
    • 제28권2호
    • /
    • pp.228-239
    • /
    • 1992
  • The purpose of the present research is to develop an efficient numerical method for the calculation of potential flow and predict the wave-making resistance for the application to ship design of tuna purse seiner. The paper deals with the numerical calculation of potential flow around the series 60 with forward velocity by the new slender ship theory. This new slender ship theory is based on the asymptotic expression of the Kelvin-source, distributed over the small matrix at each transverse section so as to satisfy the approximate hull boundary condition due to the assumption of slender body. Some numerical results for series 60, C sub(b) =0.6, hull are presented in this paper. The wave pattern and wave resistance are computed at two Froude numbers, 0.267 and 0.304. These results are better than those of Michell's thin ship theory in comparison with measured results. However, it costs much time to compute not only wave resistance but also wave pattern over some range of Froude numbers. More improvements are strongly desired in the numerical procedure.

  • PDF

On the use of numerical models for validation of high frequency based damage detection methodologies

  • Aguirre, Diego A.;Montejo, Luis A.
    • Structural Monitoring and Maintenance
    • /
    • 제2권4호
    • /
    • pp.383-397
    • /
    • 2015
  • This article identifies and addresses current limitations on the use of numerical models for validation and/or calibration of damage detection methodologies that are based on the analysis of the high frequency response of the structure to identify the occurrence of abrupt anomalies. Distributed-plasticity non-linear fiber-based models in combination with experimental data from a full-scale reinforced concrete column test are used to point out current modeling techniques limitations. It was found that the numerical model was capable of reproducing the global and local response of the structure at a wide range of inelastic demands, including the occurrences of rebar ruptures. However, when abrupt sudden damage occurs, like rebar fracture, a high frequency pulse is detected in the accelerations recorded in the structure that the numerical model is incapable of reproducing. Since the occurrence of such pulse is fundamental on the detection of damage, it is proposed to add this effect to the simulated response before it is used for validation purposes.

수치적 모델링을 통한 이산화탄소 급탕기의 특성 연구 (Studies on Performance of CO2 Water Heater by Numerical Modeling)

  • 박한빛;윤린
    • 설비공학논문집
    • /
    • 제25권1호
    • /
    • pp.20-27
    • /
    • 2013
  • Numerical modeling of $CO_2$ water heater was conducted prior to optimal design of medium and large sized $CO_2$ water heater, and the experimental test with small sized $CO_2$ water heater having heat capacity of 4 kW was completed to verify the present numerical model. The present model estimated the experimental data of COP(coefficient of performance), heating capacity, and the hot water outlet temperature within the range of 3% to 8% of mean deviation. As increase of EEV(electric expansion valve) opening area, decreasing of heating capacity and the hot water outlet temperature, and increasing of COP were found in both experimental and numerical investigation.

Structural stability evaluation of TBM tunnels using numerical analysis approach

  • Dohyun Kim
    • Geomechanics and Engineering
    • /
    • 제38권6호
    • /
    • pp.583-591
    • /
    • 2024
  • To properly simulate the excavation process and evaluate the structural stability of the tunnel, rigorous large deformation analysis method is necessary. This study applies two most widely used numerical approaches capable of modelling and considering the large deformations behavior during excavation process to analyze and evaluate the structural stability of circular tunnel based on tunnel boring machine (TBM) excavation. By comparing and combining the results from two numerical approaches, the deformation of the excavated ground will be analyzed. The stability of the circular tunnel from TBM tunneling was assessed based on the maximum deformation occurred during the excavation process. From the numerical computation it was concluded that although the range of the damage on the ground done during excavation was found to be larger under hard rock condition, maximum deformation within the circular tunnel structure was larger under weak ground conditions and deeper tunnel depths.

3D-FEMWATER 모델을 이용한 대창지역의 해수침투 범위추정 (Estimation of Seawater Intrusion Range in the Daechang Area Using 3D-FEMWATER Model)

  • 김경호;박재성;이호충;연주흠
    • 한국농공학회논문집
    • /
    • 제47권5호
    • /
    • pp.3-13
    • /
    • 2005
  • The present study examined the 3 dimensional space distribution characteristics of sea water intrusion using data available from previous observations. For this study, we used 3D FEMWATER, which is a 3 dimensional finite element model. The target area was around Daechang-ri, Gimje-si, Jeollabuk-do. The area is relatively easy to formulate a conceptual model and has observation wells in operation for surveying sea water intrusion. Considering the uncertainty of numerical simulation, we analyzed sensitivity to hydraulic conductivity, which has a relatively higher effect. According to the result of the analysis, the variation of TDS concentration had an error range of $-1,336{\~}+107 mg/{\iota}$. Taking note that the survey data from observation wells were collected when the boundary between fresh water and sea water in the aquifer was in equilibrium, we set the range of time for numerical simulation and estimated the spatial distribution of TDS concentration as the range of sea water intrusion. According to the result of estimation, the spatial distribution of TDS concentration calculated when 1,440 days were simulated was taken as the range of sea water intrusion. Using the result of calculation, we can draw not only vertical views for a certain section but also horizontal views of different depth. These views will be greatly helpful in understanding the spatial distribution of the range of sea water intrusion. In addition, the result of this study can be used rationally in proposing an optimal quantity of water pumping through investigating the moving route of sea water intrusion over time in order to prevent excessive water pumping and to maintain an optimal number of water pumping wells per interval.