• Title/Summary/Keyword: numerical radius

Search Result 620, Processing Time 0.027 seconds

A Study for Analysis on Deformation of Rubble Mound Structure Using VOF and DEM Methods (VOF법과 DEM에 의한 사석구조물 변형예측모델과 그 적용성에 관한 연구)

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.435-440
    • /
    • 2010
  • A numerical model, which can compute deformation of rubble mound structures composed with various size materials, was proposed. In the numerical model, wave field into the mound structures was computed by CADMAS-SURF and the deformations of mound structures were computed by DEM. Interaction between wave field and sectional deformation of structure was considered and to present the variation of behaviors caused by various properties of materials, computation was carried out with random coefficients by Monte Carlo simulation method for contact stiffness and friction angle. The experiments were carried out with rubbles and glass balls with radius of 2.9cm, 2.6cm and 1.5cm. And the deformation characteristics of rubble mounds composed with various size materials were clarified. Furthermore the validity and the applicability of the model were discussed by comparing with the experimental results.

Free Vibration Analysis of Fixed Ended Parabolic Arches (양단고정(兩端固定) 포물선(抛物線)아치의 자유진동(自由振動) 해석(解析))

  • Joon, Sun Man;Park, Kwang Kyu;Lee, Byoung Koo;Hwang, Hack Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.31-38
    • /
    • 1985
  • The governing differential equations and the boundary conditions for the free vibration of fixed-ended uniform parabolic arch are derived on the basis of the equilibrium equations and the D'Alembert principle. The effect of rotary inertia as well as extensional and flexural deformations is considered in the governing differential equations. A trial elgenvalue method is used for determining the natural frequencies. The Runge-Kutta method is used in this method to perform the integration of the differential equations. The detailed studies are made of the lowest three vibration frequencies for the span length equal to 10m. The effect of the rotary inertia is analyzed and it's numerical data are presented in table. And as the numerical results the frequency versus the rise of arch and the radius of gyration are presented in figures.

  • PDF

Study of numerical analysis and experiment for composite pressure hull on buckling pressure (외압을 받는 복합재 셸의 좌굴해석을 위한 실험 및 수치 해석 연구)

  • Jung H. Y.;Cho J. R.;Bae W. B.;Kwon J. H.;Choi J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.410-413
    • /
    • 2005
  • The results of an experimental and analytical study of composite pressure hull on buckling pressure are presented for LRN 300. Composite tensile test was done to know the composite material properties applied FE analysis for URN composite. We predicted the buckling and post buckling analysis of composite laminated cylindrical panels under external compression by using ABAQUS /Standard[Ver 6.4]. To obtain nonlinear static equilibrium solutions for unstable problems, where the load-displacement response can exhibit the type of nonlinear buckling behavior, during periods of the response, the load and/or the displacement may decrease as the solution evolves, used the modified Riks method. The modified Riks method is an algorithm that allows effective solution of such cases [7]. Experiments were conducted to verify the validation of present analysis for cross-ply laminated shells. The shells considered in the study have two different lamination patterns, $[{\pm}45/0/90]_{18s\;and}\;[/0/90]_{18s}$. Cylindrical panel of experiment and analysis have the radius of 200mm, length of 210mm and 60 degree of cutting angle. The critical load from experiment is $69\%$ of that of numerical analysis, because the fracture of matrix was generated before buckling. So URN 300 is not proper to use at the condition under high external pressue.

  • PDF

Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

  • Murallidharan, Janani;Giustini, Giovanni;Sato, Yohei;Niceno, Bojan;Badalassi, Vittorio;Walker, Simon P.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.859-869
    • /
    • 2016
  • Component-scale modeling of boiling is predominantly based on the Eulerian-Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

Stability Analysis of the Foundation of Hazardous Material Storage Tank for Preventing Leakage Accidents (누출사고 방지를 위한 위험물 탱크의 기초 안정성 분석)

  • Lim, Jong-Jin;Ku, Jae-Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.96-100
    • /
    • 2020
  • The leakage of hazardous materials due to the defect in storage tank foundations is likely to cause tremendous fire disasters in the industry cluster area. Thus, adequate design and construction of the tank foundation is required for preventing tank leakage. In this study, four types of typical tank foundations were classified and modeled for 3D FEM analysis to perform stability evaluation on tank foundations. Furthermore, numerical analysis indicated that stress concentration just below the tank shells is 40 times that at the tank center. The settlement influence zone is about the tank radius and tank diameter in the horizontal and vertical directions, respectively. Thus, the appropriate guidelines for the design and construction of tank foundations were suggested via a comparison assessment of the numerical analysis results on the stress distribution and displacement of the tank foundations.

A Surface Panel Method for the Analysis of Hydrofoils wih Emphasis on Local Flows around the Leading and Trailing Edges (앞날 및 뒷날 유동 특성을 고려한 표면양력판 이론에 의한 2차원수중익 단면해석)

  • Jin-Tae,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.41-50
    • /
    • 1989
  • A basic formulation of the panel method, which is based on the potential field formulation, is reviewed for the case of two-dimensional hydrofoil problems. Numerical procedures to improve the computational efficiency of the panel method are suggested. By investigating local behavior of the flow around the trailing edge, a wedge type Kutta condition is formulated. By subdividing the trailing edge panels, where dipole strengths of the subdivided panels follow the local behavior of the potential values of the flow outside a wedge, the circulation around a hydrofoil is calculated accurately with a relatively small number of panels. The subdividing technique to improve the accuracy of the numerical Kutta condition is proved to be efficient. A local behavior of the flow around the leading edge is also investigated. By matching the flow around the leading edge with that around a parabola, a very accurate velocity distribution is obtained with relatively small number of panels. An accurate prediction of the stagnation point and the pressure distribution near the leading edge may contribute to improve the accuracy of cavity predictions and boundary layer calculations around hydrofoils.

  • PDF

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Nezamabadi, Maryam Firoozi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.

Numerical Study on Flow Characteristics Around Curved Riser (굽은 형상을 가지는 라이저 주위 유동 특성에 관한 연구)

  • Jung, Jae-Hwan;Oh, Seunghoon;Nam, Bo-Woo;Park, Byeongwon;Kwon, Yong-Ju;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • The flow around a curved riser exposed to the current in various directions was investigated at a Reynolds number of 100 using a numerical simulation. The present study found that the flow features of the curved riser were distinct from those of a straight riser as a result of its large radius of curvature. Namely, there were various wake patterns according to the flow's incident angle. As the incident angle increased from $0^{\circ}$ to $90^{\circ}$, a two-row street of vortices that developed along the centerline of the curved riser became more apparent. However, when the incident angle approached $180^{\circ}$ from $90^{\circ}$, these vortices were completely suppressed by the interaction between the wake and an axial flow induced by the curvature of the riser. To identify this feature, the sectional force coefficients were also considered, and it was found that the force coefficients could be different from those found in a sectional analysis based on the strip theory when investigating vortex-induced vibration. As a result, this kind of study would be important to realistically estimate the riser VIV (vortex-induced vibration) and fatigue life, and a new force coefficient database that includes the three-dimensional effect should be established.

Experimental, Theoretical and Numerical Studies for Concentrations and Velocities of Gas Jets (가스 제트 누출의 농도 및 속도에 대한 실험, 이론 및 수치해석 연구)

  • Bang, Boo-Hyoung;Kim, Hong-Min;Kim, Sung-Hoon;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.20-26
    • /
    • 2022
  • The results of experimental, theoretical, and numerical analysis were compared regarding the concentrations and velocities of flammable gas jets generated by pressurized leakage of methane gas. The concentration was measured through experiments for the jet dispersion process, and the velocities was calculated by applying the self-similarity theory. And the velocities and concentrations were calculated using CFD tools - FLACS and CFX- compared with the results. The difference between self-similarity model and CFD is due to the buoyancy term, which increases as the distance from a leak source increases. The results are compared with dimensionless parameters using the leak source radius and velocity components along the leak axis.

Numerical Study on The Effect of Bending Angle on Pressure Change in High Pressure Hose (고압 호스에서 굽힘의 각도가 압력 변화에 미치는 영향에 대한 수치해석적 연구)

  • Hong, Ki-Bea;Kim, Min-Seok;Ryou, Hong-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • Fire damage time in high-rise buildings and wildland fire increasing every year. The use of high-pressure fire pumps is required to effectively extinguish fires. Reflecting the curvature effect of the fire hose occurring at the actual fire fighting site, this study provides a database of pressure drop, discharge velocity and maximum discharge height through C FD numerical analysis and it can provide using standards for fire extinguishing. Two Reynolds numbers of 200000 and 400000 were numerically analyzed at 0° -180° bending with water of 25℃ as a working fluid in hoses with a diameter of 65mm, a length of 15m, and a radius of curvature of 130mm. Realizable k-ε turbulence model was used and standard wall function was used. The pressure drop increases as the bending angle increases, and the maximum value at 90° and then decreases. The increasing rate is greater than the decrease. The velocity of the secondary flow also decreases after having the maximum value at 90°. The decreasing rate is greater than the increase. The turbulent kinetic energy increases to 120° and decreases with the maximum value. Pressure drop, velocity of the secondary flow, and turbulence kinetic energy are measured larger in the second bending region than in the first bending region.