• Title/Summary/Keyword: numerical processes

Search Result 1,142, Processing Time 0.029 seconds

QUEUE RESPONSE APPROXIMATION WITH DISCRETE AUTOREGRESSIVE PROCESSES OF ORDER 1

  • Kim, Yoo-Ra;Hwang, Gang-Uk
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • We consider a queueing system fed by a superposition of multiple discrete autoregressive processes of order 1, and propose an approximation method to estimate the overflow probability of the system. Numerical examples are provided to validate the proposed method.

  • PDF

Prediction of Ductile Fracture in Metal Forming Processes (금속성형공정에서 연성파괴예측)

  • 고대철;이진희;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.183-191
    • /
    • 1994
  • This paper suggests the scheme to simultaneously accomplish prediction of fracture initiation and analysis of deformation in metal forming processes. the Cockcroft-Latham criterion is used to estimate whether fracture occurs during the deformation process. The numerical predictions and experimental results of simple upsetting are compared. The proposed scheme successfully predicted the fracture initiation found experimentally.

  • PDF

Erosion processes in bedrock river -A review with special emphasize on numerical modelling- (기반암 하상의 침식과정 -수치 모형을 중심으로 한 고찰-)

  • Kim, Jong-Yeon;Hoey, Trevor;Bishop, Paul;Kim, Ju-Yong
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.2
    • /
    • pp.11-29
    • /
    • 2006
  • A bedrock river is a channel in which bedrock is exposed along the channel bed or walls for at least approximately half of its length. In some case, a continuous alluvial veneer may be present, but this is completely mobilized during floods. From the point of long term landscape evolution during the Quaternary, the bedrock channel determines local base level and the lowering rate of bedrock channels controls the rate of erosion and transport processes and forms on the adjacent hillslopes. In this review, various erosional processes in bedrock river channels are classified and discussed. Especially, theoretical and numerical models on channel bed abrasion with bed load sediment particles are introduced and discussed.

  • PDF

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

Numerical Modeling of Droplet/Wall Impingement Process (연료분무의 벽면충돌과정 해석에 대한 수치모델링)

  • Moon, Y.W.;Yu, Y.W.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.10-18
    • /
    • 1999
  • The droplet/wall impingement processes in the diesel-like environment are numerically modeled. In order to evaluate the predictive capability of the droplet/wall impingement model developed in this study, computations are carried out for two ambient temperature conditions. Numerical results indicate that the present droplet/wall impingement model reasonably well predicts the basic features of the impinging spray dynamics.

  • PDF

NUMERICAL METHODS SOLVING THE SEMI-EXPLICIT DIFFERENTIAL-ALGEBRAIC EQUATIONS BY IMPLICIT MULTISTEP FIXED STEP SIZE METHODS

  • Kulikov, G.Yu.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.341-378
    • /
    • 1997
  • We consider three classes of numerical methods for solv-ing the semi-explicit differential-algebraic equations of index 1 and higher. These methods use implicit multistep fixed stepsize methods and several iterative processes including simple iteration, full a2nd modified Newton iteration. For these methods we prove convergence theorems and derive error estimates. We consider different ways of choosing initial approximations for these iterative methods and in-vestigate their efficiency in theory and practice.

Semiparametric Bayesian multiple comparisons for Poisson Populations

  • Cho, Jang Sik;Kim, Dal Ho;Kang, Sang Gil
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.427-434
    • /
    • 2001
  • In this paper, we consider the nonparametric Bayesian approach to the multiple comparisons problem for I Poisson populations using Dirichlet process priors. We describe Gibbs sampling algorithm for calculating posterior probabilities for the hypotheses and calculate posterior probabilities for the hypotheses using Markov chain Monte Carlo. Also we provide a numerical example to illustrate the developed numerical technique.

  • PDF

Nonlinear effects in solution NMR: A numerical study on dynamics of dipolar demagnetizing field and radiation damping

  • Sangdoo Ahn;Lee, Sanghyuk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.71-83
    • /
    • 1999
  • The dynamics of the dipolar demagnetizing field is investigated by numerical simulation. The effects of radiation damping, molecular diffusion, and relaxation processes on the dipolar demagnetizing field are examined in terms of the modulation pattern of the z-magnetization and the signal intensity variation. Simulations for multi-components suggest applications for sensitivity enhancement in favorable conditions.

  • PDF

Numerical Simulation of NOx Concentration in Gwangyang Bay, Korea (광양만권 질소산화물(NOx)의 수치모의)

  • 이상득;유지영
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.897-905
    • /
    • 2002
  • A three-dimensional photochemical air pollution model considered advection, dispersion, photochemical reactions, and precipitation processes was developed. The calculated results of meteorological observation clearly exhibited geographical effects of Gwangyang Bay, in which land and sea breezes, mount-valley winds and local circular winds occurred. The observed results of daytime NOx concentrations were slightly higher than the calculated NOx concentrations in Yosu industrial complex, Gwangyang iron mill, and container yard. Eventually, the calculated NOx results generally agreed well with the observed ones.

CONCENTRATION CONTOURS IN LATTICE AND GRAIN BOUNDARY DIFFUSION IN A POLYCRYSTALLINE SOLID

  • Kim, Yongsoo;Wonmok Jae;Saied, Usama-El;Donald R. Olander
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.707-712
    • /
    • 1995
  • Grain boundary diffusion plays significant role in the fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission products such as Xe and Kr generated inside fuel pellet have to diffuse in the lattice and in the grain boundary before they reach open space in the fuel rod. In the mean time, the grains in the fuel pellet grow and shrink according to grain growth kinetics, especially at elevated temperature at which nuclear reactors are operating. Thus the boundary movement ascribed to the grain growth greatly influences the fission gas release rate by lengthening or shortening the lattice diffusion distance, which is the rate limiting step. Sweeping fission gases by the moving boundary contributes to the increment of the fission gas release as well. Lattice and grain boundary diffusion processes in the fission gas release can be studied by 'tracer diffusion' technique, by which grain boundary diffusion can be estimated and used directly for low burn-up fission gas release analysis. However, even for tracer diffusion analysis, taking both the intragranular grain growth and the diffusion processes simultaneously into consideration is not easy. Only a few models accounting for the both processes are available and mostly handle them numerically. Numerical solutions are limited in the practical use. Here in this paper, an approximate analytical solution of the lattice and stationary grain boundary diffusion in a polycrystalline solid is developed for the tracer diffusion techniques. This short closed-form solution is compared to available exact and numerical solutions and turns out to be acceptably accurate. It can be applied to the theoretical modeling and the experimental analysis, especially PIE (post irradiation examination), of low burn up fission. gas release.

  • PDF