• 제목/요약/키워드: numerical noise

검색결과 2,198건 처리시간 0.03초

원판의 비선형 비대칭진동을 위한 수치해 (Numerical solution for nonlinear asymmetric vibrations of a circular plate)

  • 이원경;세르게이 사모일렌코
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.73-80
    • /
    • 2006
  • In order to examine the validity of an asymptotic solution for nonlinear interaction in asymmetric vibration modes of a perfect circular plate, we obtain the numerical solution. The motion of the plate is governed by nonlinear partial differential equation. The initial and boundary value problem is solved by using the finite difference method. The numerical solution is compared with the asymptotic solution. It is found that traveling waves relating clockwise and counterclockwise as well as standing wave are depicted by the numerical solution.

  • PDF

다공판을 이용한 고압 가스 배관 내 밸브 유동 소음 저감에 대한 수치적 고찰 (Numerical investigation on reduction of valve flow noise in high pressure gas pipe using perforated plates)

  • 김규남;구가람;정철웅;강웅;김극수
    • 한국음향학회지
    • /
    • 제40권1호
    • /
    • pp.55-63
    • /
    • 2021
  • 본 논문에서는 고압가스 배관의 밸브 유동소음을 평가할 수 있는 수치적 방법론을 제시하고 밸브 유동소음 저감을 위한 다공판의 영향을 정량적으로 분석하였다.먼저, 고정확도의 비정상 압축성 대와류모사 기법을 이용하여 고압가스 배관의 밸브 유동과 이로 인한 유동소음을 예측하였다. 예측한 벽면 압력 스펙트럼을 측정값과의 비교를 통하여 수치해석결과의 유효성을 검증하였다. 다음으로 배관내에서 평균 유동장과 중첩되어 전파해가는 음향장의 음향파워를 평가할 수 있는 지표를 기반으로 배관내 밸브 유동에 의하여 하류방향으로 전파하는 음향파워를 분석하였다. 분석결과를 바탕으로 밸브 유동 소음 저감을 위해, 다공평판을 설계하여 밸브 후류에 설치하고 동일한 수치해석 방법을 통해 배관 하류방향으로 전파하는 음향파워를 예측하였다. 예측 결과를 기존 배관 결과와 비교하여 음향파워가 9.5 dB 감소함을 확인하였다. 이러한 결과를 바탕으로 본 연구에서 제시한 수치방법론은 고압가스 배관의 설계단계에서 뿐만 아니라 기존 시스템에서 발생하는 밸브 유동 소음을 효율적으로 저감할 수 있는 방법 개발에도 활용할 수 있을 것으로 기대한다.

공동주택 모델링을 통한 중량충격음 예측에 관한 연구 (The numerical analysis. of heavy weight impact noise for an apartment house)

  • 황재승;문대호;윤영배;홍건호;박홍근;홍성걸
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.527-532
    • /
    • 2008
  • In this study, numerical analysis is performed to investigate the sound radiation characteristics of an apartment house according to the type of the slab system. In order to satisfy the boundary condition of the apartment house, the whole floor is modelled with FEM model for three different structural system: wall, RC, flat slab system. From the analytical results, it Is shown that heavy weight floor impact noise of wail type slab is larger than that of the other slab systems and the noise radiated from the wall have great effect on the sound pressure level. The results also show that the vibration energy of RC or flat slab system is widely distributed over the whole slab, which is main reason that the noise induced by the slab systems is reduced in comparison with wail slab system.

  • PDF

소음.진동에 따른 참전복(Haliotis discus hannai)의 전중량 및 먹이섭식량 변화 (The Change of Total Weight and Food Consumption of Abalone, Haliotis discus hannai under a Vibration and Noise)

  • 정형택;김영식;최상덕
    • 한국환경과학회지
    • /
    • 제13권6호
    • /
    • pp.581-589
    • /
    • 2004
  • This paper describes the amount of food consumption and the change of total weight of abalone under a vibration with noise that can be occurred due to piling work. This experiment was conducted in the aquarium in Yosu National University. In normal situation the juvenile stage shell's(total length is 1~1.5cm) amount of food consumption was 0.81g, the middle stage shell(total length is 3~3.5cm) was 13.61g, and the adult stage shell (Total length is 7~7.5cm) was 43.l9g per 5 organisms in 24 hours, while the experimental group was observed low numerical value compared normal groups. The abalones' food consumption and total weight in both groups, the intermittent and continuance impact with noise and vibration, was reduced during this experiment. The abalones' food consumption and total weight in the experimental groups without vibration were recorded slightly high numerical value than the experimental groups with noise and vibration. Based on this experimental data we could conjecture the noise and vibration are harmful factors to bring up a physiological stress to abalones. Especially, the vibration impact by piling works could produce a considerably unfavorable effect to the abalones than noise impact.

완충재의 동특성에 따른 중량충격음 증폭에 관한 해석적 연구 (The effect of dynamic property of absorbing sheet on the amplification of heavy weight floor impact noise)

  • 황재승;문대호;박홍근;홍성걸;홍건호;임주혁;김용남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.527-528
    • /
    • 2010
  • Previous experimental results performed by many researchers for a couple of decades in South Korea have shown that an absorbing sheet inserted in a conventional floating slab system for thermal insulation or vibration absorption may amplify the vibration of the slab system at specific frequency ranges depending on the material properties of the sheet. The amplified vibration, consequently, results in the heavy weight floor impact noise exceeding the sound level limit for an apartment house, 50dB. In this study, the amplification mechanism is examined through numerical analysis and a new slab system is proposed to reduce the amplification and control the noise. The new slab system consists of studs connecting the base slab and upper concrete finishing yielding the dramatically increased stiffness of the slab. The numerical simulation is performed to investigate the effect of the slab system with studs on the vibration and noise control. The results show that the performance of the slab is sensitive to the number and location of studs, and the heavy weight floor impact noise can be reduced up to 6-7dB compared to the conventional slab system at the optimal stud location.

  • PDF

수치기법을 이용한 원심홴 소음의 음향학적 상사법칙 적용 (An Application of the Acoustic Similarity Law to Centrifugal Fan Noise by Numerical Calculation)

  • 전완호;이덕주
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.955-965
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by the these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged form the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. A centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound.

  • PDF

The Effect of Scaling of Owl's Flight Feather on Aerodynamic Noise at Inter-coach Space of High Speed Trains based on Biomimetic Analogy

  • Han, Jae-Hyun;Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • 제4권4호
    • /
    • pp.109-115
    • /
    • 2011
  • An analysis and design method for reducing aerodynamic noise in high-speed trains based on biomimetics of noiseless flight of owl is proposed. Five factors related to the morphology of the flight feather have been selected, and the candidate optimal shape of the flight feather is determined. The turbulent flow field analysis demonstrates that the optimal shape leads to diminished vortex formation by causing separation of the flow as well as allowing the fluid to climb up along the surface of the flight feather. To determine the effect of scaling of the owl's flight feather on the noise reduction, a two-fold and a four-fold scaled up model of the feather are constructed, and the numerical simulations are carried out to obtain the aerodynamic noise levels for each scale. Original model is found to reduce the noise level by 10 dBA, while two-fold increase in length dimensions reduces the noise by 12 dBA. Validation of numerical solution using wind tunnel experimental measurements is presented as well.

  • PDF

공동주택 모델링을 통한 중량충격음 예측에 관한 연구 (The Numerical Analysis of Heavy Weight Impact Noise for an Apartment House)

  • 황재승;문대호;박홍근;홍성걸;홍건호
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.162-168
    • /
    • 2009
  • In this study, numerical analysis is performed to investigate the sound radiation characteristics of an apartment house according to the type of the slab system. In order to satisfy the boundary condition of the apartment house, the whole floor is modelled with FEM model for three different structural system: wall, RC, flat slab system. From the analytical results, it is shown that heavy weight floor impact noise of wall type slab is larger than that of the other slab systems and the noise radiated from the wall have great effect on the sound pressure level. The results also show that the vibration energy of RC or flat slab system is widely distributed over the whole slab, which is main reason that the noise induced by the slab systems is reduced in comparison with wall slab system.

비선형 진동계 정규모드의 수치적 계산 연구 (Research on Numerical Calculation of Normal Modes in Nonlinear Vibrating Systems)

  • 이경현;한형석;박성호;전수홍
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.795-805
    • /
    • 2016
  • Nonlinear normal modes(NNMs) is a branch of periodic solution of nonlinear dynamic systems. Determination of stable periodic solution is very important in many engineering applications since the stable periodic solution can be an attractor of such nonlinear systems. Periodic solutions of nonlinear system are usually calculated by perturbation methods and numerical methods. In this study, numerical method is used in order to calculate the NNMs. Iteration of the solution is presented by multiple shooting method and continuation of solution is presented by pseudo-arclength continuation method. The stability of the NNMs is analyzed using Floquet multipliers, and bifurcation points are calculated using indirect method. Proposed analyses are applied to two nonlinear numerical models. In the first numerical model nonlinear spring-mass system is analyzed. In the second numerical model Jeffcott rotor system which has unstable equilibria is analyzed. Numerical simulation results show that the multiple shooting method can be applied to self excited system as well as the typical nonlinear system with stable equilibria.

덕트 내부의 고차모드 수보다 적은 수의 제어음원과 마이크로폰을 이용한 덕트 방사소음 제어에 관한 연구 (A Study on Active Control of the Radiated Duct Noise with Insufficient Number of Control Dources and Microphones)

  • 윤두병;김양한;정균양;조대승
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.283-288
    • /
    • 1998
  • If one wants to control the noise from a duct, then one must have sufficient number of sensors and actuators so that the control system is observable and controllable. A number of sensors and actuators for control of radiating noise from a duct have to be incorporated with the number of modes which one wants to control. These considerations motivated the present study that considers a control system which has less microphones and actuators than required. In this work, by theoretical analysis and numerical simulation, the control performance and robust reliability of such a kind of control system is investigated in terms of sound-field variables and control system variables. Then the possibility of implementation of the robust radiation power control system is verified by theoretical analysis and numerical simulation. In addition, the control performance of the control system is verified by experiment.

  • PDF