• Title/Summary/Keyword: numerical modelling

Search Result 920, Processing Time 0.03 seconds

An integrated studies for salt-water intrusion in Yeonggwang-gun, Korea

  • Hwang Seho;Chi Sejung;Lee Won-suk;Shin Jehyun;Park Inhwa;Huh Dae-Gee;Lee Sang-kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.455-458
    • /
    • 2003
  • A combination of drilling, hydrogeochemical survey, geophysical survey and the numerical modelling for the flow and transport of groundwater was performed to evaluate the seawater intrusion in Baeksu-eup, Yeonggwang-gun, Korea. The survey area extends to over 24 $km^2$. Twelve wells were also drilled for the collection of geologic, geochemical, hydrologic, and geophysical logging data to delineate the degree and vertical extent of seawater intrusion. To evaluate and map the salinity in a coastal aquifer, geophysical data and hydrogeochemical results were used. Layer parameters derived from VES data, various in situ physical properties from geophysical well loggings, and the estimated equivalent NaCl concentration were used as the useful input parameters for the numerical simulation with density-dependent flow. Our multidisciplinary approach for evaluating the seawater intrusion can be considered as a valuable attempt to enhancing the utilization of various data and the reliability of numerical ground modelling.

  • PDF

Numerical Simulation of the Thermal Environment inside an Opened Tomb (개방된 고분내부의 열 환경 수치모사)

  • Lee, Kum-Bae;Youn, Young-Muk;Jun, Hee-Ho;Park, Jin-Yang;Ko, Seok-Bo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.872-878
    • /
    • 2006
  • In recent years the importance of the preservation of cultural artefacts like ancient tombs has been widely accepted domestically and internationally as the quality of life improves. However not much technical attention has been paid for the facilities and systems to preserve those artefacts. Even the general understanding of the preservatory environment of the underground space as tombs is poor. As a part of the present study, the temperature and relative humidity inside a selected artefact, Shinkwan-ri tomb, have been monitored for a year round by the present author to improve the understanding of the indoor thermal environment, is pursued to provide a predictive tool of numerical modelling of Shinkwan-ri tomb the opened underground space thermal environment. In this study, predictive numerical modelling of Shinkwan-ri tomb using the Computational Fluid Dynamics, calculate the velocity and temperature distribution and offer basic data which are necessary for the best fitted design of tomb air-conditioning device.

  • PDF

Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone

  • Azarafza, Mohammad;Bonab, Masoud Hajialilue;Akgun, Haluk
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.481-495
    • /
    • 2021
  • This article assesses and estimates the progressive failure mechanism of complex pit-rest secondary toppling of slopes that are located within the vicinity of the Gas Flare Site of Refinery No. 4 in South Pars Special Zone (SPSZ), southwest Iran. The finite element numerical procedure based on the Shear Strength Reduction (SSR) technique has been employed for the stability analysis. In this regard, several step modelling stages that were conducted to evaluate the slope stability status revealed that the main instability was situated on the left-hand side (western) slope in the Flare Site. The toppling was related to the rock column-overburden system in relation to the overburden pressure on the rock columns which led to the progressive instability of the slope. This load transfer from the overburden has most probably led to the separation of the rock column and to its rotation downstream of the slope in the form of a complex pit-rest secondary toppling. According to the numerical modelling, it was determined that the Strength Reduction Factor (SRF) decreased substantially from 5.68 to less than 0.320 upon progressive failure. The estimated shear and normal stresses in the block columns ranged from 1.74 MPa to 8.46 MPa, and from 1.47 MPa to 16.8 MPa, respectively. In addition, the normal and shear displacements in the block columns ranged from 0.00609 m to 0.173 m and from 0.0109 m to 0.793 m, respectively.

Modelling of reinforced concrete flat slab-column connections for system-scale seismic analyses of high-rise buildings

  • T.Y. Yang;O. AlHarras;L. Tobber;O. Sargazi
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Reinforced concrete flat slab (RCFS) with columns is a standard gravity floor system for tall buildings in North America. Typically, RCFS-column connections are designed to resist gravity loads, and their contribution to resisting seismic forces is ignored. However, past experimental research has shown that RCFS-column connections have some strength and ductility, which may not be ignored. Advanced numerical models have been developed in the past to determine the nonlinear cyclic behavior of RCFS-column connections. However, these models are either too complicated for nonlinear dynamic analysis of an entire building or not developed to model the behavior of modern RCFS-column connections. This paper proposes a new nonlinear model suitable for modern RCFS-column connections. The numerical model is verified using experimental data of specimens with various material and reinforcement properties. A 40-story RC shear wall building was designed and analyzed to investigate the influence of RCFS on the global response of tall concrete buildings. The seismic responses of the building with and without the RCFS were modelled and compared. The results show that the modelling of RCFS has a significant impact on the inter-story drifts and force demands on both the seismic force-resisting and gravity elements.

REDUCED-ORDER APPROACH USING WEIGHTED CENTROIDAL VORONOI TESSELLATION

  • Piao, Guang-Ri;Lee, Hyung-Chen;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • In this article, we study a reduced-order modelling for distributed feedback control problem of the Burgers equations. Brief review of the centroidal Voronoi tessellation (CVT) are provided. A weighted (nonuniform density) CVT is introduced and low-order approximate solution and compensator-based control design of Burgers equation is discussed. Through weighted CVT (or CVT-nonuniform) method, obtained low-order basis is applied to low-order functional gains to design a low-order controller, and by using the low-order basis order of control modelling was reduced. Numerical experiments show that a solution of reduced-order controlled Burgers equation performs well in comparison with a solution of full order controlled Burgers equation.

  • PDF

Effects of modelling on the earthquake response of asymmetrical multistory buildings

  • Thambiratnam, David P.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.211-225
    • /
    • 1994
  • Responses of asymmetrical multistorey buildings to earthquakes are obtained by quasi-static code approach and real time dynamic analysis, using two different structural models. In the first model, all vertical members are assumed to be restrained at the slab levels and hence their end rotations, about horizontal axes, are taken as zero. In the second model this restriction is removed and the rotation is assumed to be proportional to the lateral stiffness of the member. A simple microcomputer based procedure is used in the analyses, by both models. Numerical examples are presented where results obtained from both the models are given. Effects of modelling on the response of three buildings, each with a different type and degree of asymmetry, are studied. Results for deflections and shear forces are presented and the effects of the type of model on the response are discussed.

The Application of Lagrangian Particle-Tracking Method to Modelling of Oil-Spill Dispersion (라그랑지안 입자추적법에 의한 유출유 확산모델링)

  • 정연철
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.73-83
    • /
    • 1997
  • To predict the oil-spill dispersion in marine waters, the oil-spill dispersion model based on Lagrangian particle-tracking method was developed and applied to Kwangyang and Jinju Bay. The tidal current movements to be required as input data of the oil-spill dispersion model were obtained by a two-dimensional numerical tidal model. Evaluation of tidal current movements using mean tide was successful. Modelling results were compared with the field data obtained at spill site. There were some descrepancies between modeling results and field data. However, the general pattern of modelling results was similar to that of field data. Provided the real-time tidal currents and more accurate wind data are supported, more favorable results can be obtained.

  • PDF

Numerical Studies on Combined VH Loading and Inclination Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-수평 조합하중 지지력과 경사계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.29-46
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - horizontal loading capacity was studied by three-dimensional numerical modelling. A numerical model was implemented to simulate the swipe loading and the probe loading methods and an interpretation procedure was devised in order to eliminate the numerical error from the restricted mesh density. Using the Mohr-Coulomb plasticity model, the effect of friction angle was studied under the associated flow-rule condition. The swipe loading method, which is efficient in that the interaction diagram can be drawn with smaller number of analyses, was confirmed to give similar results with the probe loading method, which follows closely the load-paths applied to real structures. For circular footings with a rough base, the interaction diagram for combined vertical (V) - horizontal (H) loading and the inclination factor were barely affected by the friction angle. It was found that the inclination factors for strip and rectangular footings are applicable to circular footings. For high H/V ratios, the results by numerical modelling of this study were smaller than the results of previous studies. Discussions are made on the factors affecting the numerical results and the areas for further researches.

Numerical analysis of sedimentary compaction: Implications for porosity and layer thickness variation (수치해석적 다짐 작용 연구: 공극률과 퇴적층 두께 변화에 미치는 영향)

  • Kim, Yeseul;Lee, Changyeol;Lee, Eun Young
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.631-640
    • /
    • 2018
  • To understand the formation and evolution of a sedimentary basin in basin analysis and modelling studies, it is important to analyze the thickness and age range of sedimentary layers infilling a basin. Because the compaction effect reduces the thickness of sedimentary layers during burial, basin modelling studies typically restore the reduced thickness using the relation of porosity and depth (compaction trend). Based on the compilation plots of published compaction trends of representative sedimentary rocks (sandstone, shale and carbonate), this study estimates the compaction trend ranges with exponential curves and equations. Numerical analysis of sedimentary compaction is performed to evaluate the variation of porosity and layer thickness with depth at key curves within the compaction trend ranges. In sandstone, initial porosity lies in a narrow range and decreases steadily with increasing depth, which results in relatively constant thickness variations. For shale, the porosity variation shows two phases which are fast reduction until ~2,000 m in depth and slow reduction at deeper burial, which corresponds to the thickness variation pattern of shale layers. Carbonate compaction is characterized by widely distributed porosity values, which results in highly varying layer thickness with depth. This numerical compaction analysis presents quantitatively the characteristics of porosity and layer thickness variation of each lithology, which influence on layer thickness reconstruction, subsidence and thermal effect analyses to understand the basin formation and evolution. This work demonstrates that the compaction trend is an important factor in basin modelling and underlines the need for appropriate application of porosity data to produce accurate analysis outcomes.

Numerical Modelling of the Adjustment Processes of Minning Pit in the Dredged Channels (수치모의를 이용한 준설하천의 웅덩이 적응에 관한 연구)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.921-932
    • /
    • 2010
  • In this study, the adjustment processes of the disturbed channels by sand or gravel mining were investigated by a two dimensional numerical model in the generalized coordinate system. As a numerical scheme, the CIP (cubic interpolated pseudoparticle method) method was used to calculate the advection term in the flow field and central difference method was used to the diffusion term in it. The pit of the channel was partially filled with sediment at the toe of the pit upstream. As time increased, the headcut erosion upstream in the pit was decreased due to the sediment inflow. The almost inflow sediment upstream was trapped into the pit and the sediment deposit wedge migrated downstream in the pit with the steep submerged angle of repose. The numerical model was reproduced well the evolution processes of the channel. The mining pit migrated with speed as the channel was steep, and the numerical results were in overall agreement with the experimental results.