• Title/Summary/Keyword: numerical modeling technique

Search Result 382, Processing Time 0.022 seconds

Development of a Numerical Modeling Technique for Predicting Groundwater flow and Heat Transport in a Standing Column Well (수주지열정의 지하수 유동 및 지열 이동 예측을 위한 수치 모델링 기법 개발)

  • Park, Seongmin;Hwang, Gisub;Moon, Jongphil;Kihm, Jung-Hwi
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.461-471
    • /
    • 2016
  • Numerical modules based on a conventional thermo-hydrological numerical model, TOUGH2, are developed to provide a numerical modeling technique for a standing column well (SCW). Cooling and heating operations for two different types of SCW are then simulated using these modules. Modeling showed these operations to be significantly influenced by heat exchange and fluid mixing between the SCW and the adjacent geologic formation and groundwater. The results also reveal that heat exchange between the oppositely flowing outflow and inflow in the PVC or PE pipe and the SCW borehole is an important factor. Overall, the numerical modeling technique developed here can reasonably simulate fluid flow and heat transport phenomena in the complex internal structures of a SCW. The proposed technique can be used practically for the quantitative analysis of heat exchange in a SCW at the design, construction, and operation stages.

Enhancing Medium-Range Forecast Accuracy of Temperature and Relative Humidity over South Korea using Minimum Continuous Ranked Probability Score (CRPS) Statistical Correction Technique (연속 순위 확률 점수를 활용한 통합 앙상블 모델에 대한 기온 및 습도 후처리 모델 개발)

  • Hyejeong Bok;Junsu Kim;Yeon-Hee Kim;Eunju Cho;Seungbum Kim
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.23-34
    • /
    • 2024
  • The Korea Meteorological Administration has improved medium-range weather forecasts by implementing post-processing methods to minimize numerical model errors. In this study, we employ a statistical correction technique known as the minimum continuous ranked probability score (CRPS) to refine medium-range forecast guidance. This technique quantifies the similarity between the predicted values and the observed cumulative distribution function of the Unified Model Ensemble Prediction System for Global (UM EPSG). We evaluated the performance of the medium-range forecast guidance for surface air temperature and relative humidity, noting significant enhancements in seasonal bias and root mean squared error compared to observations. Notably, compared to the existing the medium-range forecast guidance, temperature forecasts exhibit 17.5% improvement in summer and 21.5% improvement in winter. Humidity forecasts also show 12% improvement in summer and 23% improvement in winter. The results indicate that utilizing the minimum CRPS for medium-range forecast guidance provide more reliable and improved performance than UM EPSG.

Dynamic Analysis of Simply Supported Flexible Structures Undergoing Large Overall Motion (전체운동을 하는 단순지지 유연 구조물의 동적해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1363-1370
    • /
    • 1995
  • A nonlinear dynamic modeling method for simply supported structures undergoing large overall motion is suggested. The modeling method employs Rayleigh-Ritz mode technique and Von Karman nonlinear strain measures. Numerical study shows that the suggested modeling method provides qualitatively different results from those of the Classical Linear Cartesian modeling method. Especially, natural frequency variations and residual deformation due to membrane strain effects are observed in the numerical results obtained by the suggested modeling method.

A POSTERIORI ERROR ESTIMATOR FOR HIERARCHICAL MODELS FOR ELASTIC BODIES WITH THIN DOMAIN

  • Cho, Jin-Rae;J. Tinsley Oden
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.16-33
    • /
    • 2002
  • A concept of hierarchical modeling, the newest modeling technology. has been introduced early In 1990. This nu technology has a goat potential to advance the capabilities of current computational mechanics. A first step to Implement this concept is to construct hierarchical models, a family of mathematical models which are sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics In their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-. plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical analysis of hierarchical models, two kinds of errors prevail: the modeling error and the numerical approximation errors. To ensure numerical simulation quality, an accurate estimation of these two errors Is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures Is derived using element residuals and flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error Indicators for two types of errors, in the energy norm. Comparing to the classical error estimators using flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

  • PDF

A posteriori error estimator for hierarchical models for elastic bodies with thin domain

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.513-529
    • /
    • 1999
  • A concept of hierarchical modeling, the newest modeling technology, has been introduced in early 1990's. This new technology has a great potential to advance the capabilities of current computational mechanics. A first step to implement this concept is to construct hierarchical models, a family of mathematical models sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics in their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-, plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical, analysis of hierarchical models, two kinds of errors prevail, the modeling error and the numerical approximation error. To ensure numerical simulation quality, an accurate estimation of these two errors is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures is derived using the element residuals and the flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error indicators for two types of errors, in the energy norm. Compared to the classical error estimators using the flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

Numerically Analytical Design of An Orifice Fluid Damper (오리피스 유체댐퍼의 수치해석적 설계)

  • 이재천;김성훈;문석준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.105-112
    • /
    • 2003
  • This paper presents the numerical design technology of a passive orifice fluid damper system especially for the characteristics between the damper piston velocity and the damping force. Numerical analysis with the visual interfacial modeling technique was applied into the analysis of the damper system's dynamics. A prototype orifice fluid damper was manufactured and experimentally tested to validate the numerical simulation results. The performances of various damper system schemes were investigated based on the verified numerical simulation model of orifice fluid damper.

Improved Equivalent Beam Element Modeling Technique for Large Scale Wind-Turbine Composite Blade (대형 풍력발전용 복합재료 블레이드의 개선된 등가 모델링 기법)

  • Kim, Dong-Hyun;Park, Hyo-Geun;Kim, Dong-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.32-37
    • /
    • 2008
  • In this study, we have introduced an improved equivalent modeling technique for large scale composite wind-turbine blade. Conventional or general equivalent modeling procedure may give critical error in the analysis results because of geometric coupling effects. For the analyses of structural vibration and aeroelastic problems, the accuracy of equivalent structural models is very important since it can have high numerical efficiency and various practical applications. Three-dimensional realistic composite wind-turbine blade model is practically considered for numerical study. In order to validate the effect of the mass and the stiffness of the equivalent beam model, comparison study based on the natural vibration analysis has been conducted, and the accuracy levels of the conventional and modified equivalent modeling techniques are presented.

Numerical analysis of the blood flow in coronary artery combining CFD method with the vascular system modeling (혈관계 시스템 모델과 CFD의 결합을 통한 관상동맥 내 혈류의 수치적 해석)

  • Shim Eun Bo;Park Myung Soo;Ko Hyung Jong;Kim Kyung Moon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.152-157
    • /
    • 1999
  • For the simulation of the blood flow in coronary artery, the system modeling of coronary hemodynamics is combined with CFD technique. The blood flow in coronary artery interacts with the global coronary circulation. Especially in case of the coronary artery with stenosis, the interaction plays an important role in the hemodynamics of the circulation. In this study we present a combined numerical approach using both the CFD technique for flow simulation and the global system model of coronary circulation. We use a lumped parameter model for the global simulation of coronary circulation whereas the finite element method is employed to compute the viscous flow field in stenosed coronary artery, The time variation of the pressure drop due to stenosis is obtained from the proposed numerical method. Numerical results shows that the flow resistance and pressure drop due to stenosis has a relatively large value in systole.

  • PDF

An Improved Finite Element Modeling Technique for Prestressed Concrete Girder Bridges (PSC보 교량의 유한요소 모델링방법에 관한 연구)

  • 김광수;박선규;김형열
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.33-40
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity of partially prestressed concrete girder bridges. Based on the finite element method of analysis, shell and frame elements are used to model the slab and girders of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab an mid-plane of girder. This paper also includes the comparision of three different equations that are used in the calculation of effective moment of inertia for the partially prestressed concrete girders. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. A good agreement is achieved between the numerical solutions by using the proposed method load test results.