• 제목/요약/키워드: numerical material modeling

검색결과 425건 처리시간 0.026초

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

Numerical evaluation of hypothetical core disruptive accident in full-scale model of sodium-cooled fast reactor

  • Guo, Zhihong;Chen, Xiaodong;Hu, Guoqing
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2120-2134
    • /
    • 2022
  • A hypothetical core destructive accident (HCDA) has received widespread attention as one of the most serious accidents in sodium-cooled fast reactors. This study combined recent advantages in numerical methods to realize realistic modeling of the complex fluid-structure interactions during HCDAs in a full-scale sodium-cooled fast reactor. The multi-material arbitrary Lagrangian-Eulerian method is used to describe the fluid-structure interactions inside the container. Both the structural deformations and plug rises occurring during HCDAs are evaluated. Two levels of expansion energy are considered with two different reactor models. The simulation results show that the container remains intact during an accident with small deformations. The plug on the top of the container rises to an acceptable level after the sealing between the it and its support is destroyed. The methodology established in this study provides a reliable approach for evaluating the safety feature of a container design.

Numerical assessment of nonlocal dynamic stability of graded porous beams in thermal environment rested on elastic foundation

  • Al-Toki, Mouayed H.Z.;Ali, Hayder A.K.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.455-461
    • /
    • 2022
  • Numerical assessment of the dynamic stability behavior of nonlocal beams rested on elastic foundation has been provided in the present research. The beam is made of fucntional graded (FG) porous material and is exposed to thermal and humid environments. It is also consiered that the beam is subjected to axial periodic mechanical load which especific exitation frequency leading to its instability behavior. Beam modeling has been performed via a two-variable theory developed for thick beams. Then, nonlocal elasticity has been used to establish the governing equation which are solved via Chebyshev-Ritz-Bolotin method. Temperature and moisture variation showed notable effects on stability boundaries of the beam. Also, the stability boundaries are affected by the amount of porosities inside the material.

Effect of shear stresses on the deflection and optimal configuration of a rectangular FGM structure

  • Ayoub El Amrani;Hafid Mataich;Jaouad El-Mekkaoui;Bouchta El Amrani
    • Coupled systems mechanics
    • /
    • 제12권4호
    • /
    • pp.391-407
    • /
    • 2023
  • This paper presents a static study of a rectangular functional graded material (FGM) plate, simply supported on its four edges, adopting a refined higher order theory that looks for, only,four unknowns,without taking into account any corrective factor of the deformation energy with the satisfaction of the zero shear stress conditions on the upper and lower faces of the plate. We will have determined the contribution of these stresses in the transverse deflection of the plate, as well as their effects on the axial stress within the interfaces between the layers(to avoid any problem of imperfections such as delamination) and on the top and bottom edges of the plate in order to take into account the fatigue phenomenon when choosing the distribution law of the properties used during the design of the plate. A numerical statement, in percentage, of the contribution of the shear effect is made in order to show the reliability of the adopted theory. We will also have demonstrated the need to add the shear effect when the aspect ratio is small or large. Code routines are programmed to obtain numerical results illustrating the validity of the model proposed in the theory compared to those available in the literature.

부분 유입되는 터빈 블레이드의 과도 응답 특성에 대한 수치 해석 (Numerical Analysis on Transient Response of Turbine Blandes by Partial Admission)

  • 이진갑
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.396-404
    • /
    • 1998
  • A numerical analysis is presented for the transient behavior of a rotating turbines blades. The response due to partial admission during start-up and resonance pass is considered, Modal analysis and numerical integation method are used for solving the problems A theory for determining the material and aerodynamic damping values of turbine blades is presented. The damping values of the various modeling of blaes-uniform beam and tapered twisted beam-are calculated and the influence on blades response is investigated. The effect of angular velocity on transient response are also shown.

  • PDF

인장연화거동을 고려한 강섬유 보강 초고성능 콘크리트 보의 모멘트-곡률 해석 (Moment-Curvature Analysis of Steel Fiber-Reinforced Ultra High Performance Concrete Beams with Tension Softening Behavior)

  • 양인환;조창빈;김병석
    • 한국전산구조공학회논문집
    • /
    • 제24권3호
    • /
    • pp.237-248
    • /
    • 2011
  • 강섬유 보강 콘크리트의 인장연화특성은 구조적 거동에 매우 중요한 역할을 하며, 강섬유 보강 초고성능 콘크리트의 우수한 구조성능을 파악하기 위해서는 인장연화거동의 정밀모델링 및 이를 반영한 수치해석 기법이 필요하다. 따라서, 이 논문에서는 강섬유로 보강된 콘크리트의 부재의 인장연화거동 특성을 고려한 휨 거동을 예측하기 위한 수치해석 기법을 제시하였다. 강섬유 보강 콘크리트의 하중-균열개구변위 실험결과를 반영하여 가상균열모델에 근거한 균열방정식과 역해석 기법에 의해 인장연화모델링을 수행하였다. 또한, 인장연화거동을 반영한 재료모델링을 수행하였다. 제시기법에 의한 초고성능 콘크리트 보의 모멘트-곡률 수치해석 결과를 실험결과와 비교 분석하였으며, 수치해석 결과와 실험결과는 비교적 잘 일치하고 있다. 제안기법에 의해 강섬유 보강 초고강도 콘크리트 보의 휨강도를 정확하게 예측할 수 있다고 판단된다.

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • 제10권2호
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

Can-Flange 성형에서 금형형상에 따른 소재 유동특성 (The Material Flow according to Die Geometry in Can-Flange Forming)

  • 고병두;이하성
    • Design & Manufacturing
    • /
    • 제6권2호
    • /
    • pp.42-47
    • /
    • 2012
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. We have discussed the influences of tool geometry such as punch nose angle, relative gap height, die corner radius on material flow and surface expansion into can and flange region. To analyse the process, numerical simulations by the FEM and experiment by physical modeling using Al alloy as a model material have been performed. Based on the results, the influence of fixed parameters on the distribution of divided material flow and surface expansion are obtained.

  • PDF

Forced vibration analysis of functionally graded sandwich deep beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • 제8권3호
    • /
    • pp.259-271
    • /
    • 2019
  • This paper presents forced vibration analysis of sandwich deep beams made of functionally graded material (FGM) in face layers and a porous material in core layer. The FGM sandwich deep beam is subjected to a harmonic dynamic load. The FGM in the face layer is graded though the layer thickness. In order to get more realistic result for the deep beam problem, the plane solid continua is used in the modeling of The FGM sandwich deep beam. The equations of the problem are derived based the Hamilton procedure and solved by using the finite element method. The novelty in this paper is to investigate the dynamic responses of sandwich deep beams made of FGM and porous material by using the plane solid continua. In the numerical results, the effects of different material distributions, porosity coefficient, geometric and dynamic parameters on the dynamic responses of the FGM sandwich deep beam are investigated and discussed.

건설 그래픽 시뮬레이션 시스템의 기능개선에 관한 연구 (Study on the Enhancement of the Functionality of Construction Graphical Simulation System)

  • 김영환;서종원
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2004년도 제5회 정기학술발표대회 논문집
    • /
    • pp.543-547
    • /
    • 2004
  • 본 연구에서는 현재의 그래픽 시뮬레이션 시스템의 한계를 파악하기 위한 노력으로서 그래픽 시뮬레이션 시스템을 이용한 건설 프로세스 시뮬레이션 결과의 시각화와 장비 운용의 사실적 묘사를 위한 물리적 모델링에 관해서 다루었다. 비정형 물체를 다루는 공사인 토공작업에 대한 시각화를 위하여서 건설공사에 주로 사용되는 수학/통계적 시뮬레이션인 불연속사건 시뮬레이션(Discrete Event Simulation) 프로그램의 출력을 분석하여 작업시간, 대기시간, 운반물량 등에 대한 수치적 결과가 건설작업의 3차원 그래픽 시각화로 표현될 수 있도록 장비, 자재, 작업환경에 대한 객체지향 모델을 설계하였다. 또한 그래픽 시뮬레이션을 통해서 시공과정을 현실과 보다 유사하게 표현하기 위한 일환으로서, 물리적 특성을 고려하여야만 합리적으로 묘사할 수 있는 대표적 장비운용 특성인 크레인 붐(Boom)을 움직였을 때 나타나는 케이블과 자재의 추진동에 관한 물리적 모델링을 수행하여 건설 그래픽 시뮬레이션 시스템의 유용도를 제고하였다.

  • PDF