1 |
Ebrahimi, F. and Farazmandnia, N. (2018), "Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams", Steel Compos. Struct., 27(2), 149-159. https://doi.org/10.12989/scs.2018.27.2.149.
DOI
|
2 |
Gholami, R. and Ansari, R. (2018), "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019.
DOI
|
3 |
Hadji, L., and Adda Bedia, E.A. (2015), "Influence of the porosities on the free vibration of FGM beams", Wind Struct., 21(3), 273-287. https://doi.org/10.12989/was.2015.21.3.273.
DOI
|
4 |
Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
DOI
|
5 |
Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143.
DOI
|
6 |
Nguyen, T.K. and Nguyen, B.D. (2015), "A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams", J. Sandw. Struct. Mater., 17(6), 613-631. https://doi.org/10.1177%2F1099636215589237.
DOI
|
7 |
Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547.
DOI
|
8 |
Van Tung, H. (2017), "Nonlinear thermomechanical response of pressure-loaded doubly curved functionally graded material sandwich panels in thermal environments including tangential edge constraints", J. Sandw. Struct. Mater., 20(8), 974-1008. https://doi.org/10.1177%2F1099636216684312.
DOI
|
9 |
Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030.
DOI
|
10 |
Wang, Z.X. and Shen, H.S. (2011), "Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations", Compos. Struct., 93(10), 2521-2532. https://doi.org/10.1016/j.compstruct.2011.04.014.
DOI
|
11 |
Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
DOI
|
12 |
Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010), "Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak's elastic foundations", Acta Mechanica, 212(3-4), 233-252. https://doi.org/10.1007/s00707-009-0252-6.
DOI
|
13 |
Zouatnia, N., Hadji, L. and Kassoul, A. (2017), "An analytical solution for bending and vibration responses of functionally graded beams with porosities", Wind Struct., 25(4), 329-342. https://doi.org/10.12989/was.2017.25.4.329.
DOI
|
14 |
Akbas, S.D. (2015c), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
DOI
|
15 |
Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
DOI
|
16 |
Akbas, S.D. (2013), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Prob. Eng., http://dx.doi.org/10.1155/2013/871815.
|
17 |
Akbas, S.D. (2015b), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stability Dyn., 15(04), 1450065. https://doi.org/10.1142/S0219455414500655.
DOI
|
18 |
Akbas, S.D. (2016a), "Post-buckling analysis of edge cracked columns under axial compression loads", Int. J. Appl. Mech., 8(8), 1650086. https://doi.org/10.1142/S1758825116500861.
DOI
|
19 |
Akbas, S.D. (2016b), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
DOI
|
20 |
Akbas, S.D. (2017a), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
DOI
|
21 |
Akbas, S.D. (2017b), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.
DOI
|
22 |
Akbas, S.D. (2017c), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://dx.doi.org/10.22055/jacm.2017.21540.1107.
|
23 |
Akbas, S.D. (2017d), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(05), 1750076. https://doi.org/10.1142/S1758825117500764.
DOI
|
24 |
Akbas, S.D. (2015a), "Post-buckling analysis of axially functionally graded three-dimensional beams", Int. J. Appl. Mech., 7(03), 1550047. https://doi.org/10.1142/S1758825115500477.
DOI
|
25 |
Akbas, S.D. (2017e), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(07), 1750100. https://doi.org/10.1142/S1758825117501009.
DOI
|
26 |
Akbas, S.D. (2017f), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stability Dyn., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X.
DOI
|
27 |
Akbas, S.D. (2018d), "Investigation on free and forced vibration of a bi-material composite beam", J. Polytechnic-Politeknik Dergisi, 21(1), 65-73.
|
28 |
Akbas, S.D. (2018a), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
DOI
|
29 |
Akbas, S.D. (2018b), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.39.
DOI
|
30 |
Akbas, S.D. (2018c), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.59.
DOI
|
31 |
Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871.
DOI
|
32 |
Avcar, M. and Alwan, H.H.A. (2017), "Free vibration of functionally graded Rayleigh beam", Int. J. Eng. Appl. Sci., 9(2), 127-137. http://dx.doi.org/10.24107/ijeas.322884.
|
33 |
Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
DOI
|
34 |
Barka, M., Benrahou, K. H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.91.
DOI
|
35 |
Benbakhti, A., Bouiadjra, M. B., Retiel, N. and Tounsi, A. (2016), "A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates", Steel Compos. Struct., 22(5), 975-999. https://doi.org/10.12989/scs.2016.22.5.975.
DOI
|
36 |
Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
DOI
|
37 |
Bhangale, R.K. and Ganesan, N. (2006), "Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core", J. Sound Vib., 295(1-2), 294-316. https://doi.org/10.1016/j.jsv.2006.01.026.
DOI
|
38 |
Bouakkaz, K., Hadji, L., Zouatnia, N. and Bedia E.A.A. (2015), "An analytical method for free vibration analysis of functionally graded sandwich beams", Wind Struct., 23(1), 59-73. https://doi.org/10.12989/was.2015.23.1.59.
DOI
|
39 |
Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.19.
DOI
|
40 |
Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Walled Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
DOI
|
41 |
Civalek, O. and Baltacioglu, A.K. (2019), "Free vibration analysis of laminated and FGM composite annular sector plates", Compos. Part B Eng., 157, 182-194. https://doi.org/10.1016/j.compositesb.2018.08.101.
DOI
|
42 |
Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams", Coupled Syst. Mech., 6(2), 207-227. https://doi.org/10.12989/csm.2017.6.2.207.
DOI
|