• Title/Summary/Keyword: numerical evaluation

Search Result 2,640, Processing Time 0.031 seconds

A Study on the Performance Evaluation of Double-Layered Catayst MEA (이중촉매 MEA의 성능평가에 관한 연구)

  • Kim Hong-Gun;Kang Sung-Soo;Kwac Lee-Ku;Kang Young-Woo
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.50-59
    • /
    • 2006
  • An experimental and numerical study is carried out to investigate the performance and the efficiency humidifying Membrane Electrolyte Assembly and having the double-layered catalyst in a fuel cell system which is taken into account the physical and thermal concept. Based on the principals of the problem, the equation of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used for the numerical calculation. A unit cell for $200cm^2$ MEA is assembled and measured for finding better operational situation. After finding the optimal condition, 10 cell stacked PEMFC is fabricated. For the performance evaluation, V-I and power curves are examined in detail by changing the condition of humidity, temperature, pressure, thickness of catalyst and oxidant. It is found that the power is maximized around 500W at 80A.

  • PDF

Evaluation Technique of Seismic Performance on Agricultural Infrastructure - Based on Dynamic Numerical Analysis - (농업 기반시설의 내진성능 평가기법 - 동적 수치해석 중심으로-)

  • Lee, Dal-Won;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.75-84
    • /
    • 2004
  • The evaluation technique of seismic performance on agricultural infrastructure based on dynamic numerical simulations, which Included a cyclic elasto-plastic and a viscoelastic-viscoplastic constitutive model to actual multi-layered ground conditions during large earthquake were performed by a liquefaction analysis in the present study. From the liquefaction analysis, it was verified that the models can give a good description of the damping characteristics and liquefaction phenomena of ground accurately during large event which induces plastic deformation in large strain range.

Error Analysis Caused by Using the Dftin Numerical Evaluation of Rayleigh's Integral (레일리 인테그랄의 수치해석상 오차에 대한 이론적 고찰)

  • Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.323-330
    • /
    • 1989
  • Large bias errors which occur during a numerical evaluation of the Rayleigh's integral is not due to the replicated source problem but due to the coincidence of singularities of the Green's function and the sampling points in Fourier domain. We found that there is no replicated source problem in evaluating the Rayleigh's integral numerically by the reason of the periodic assumption of the input sequence in Dn or by the periodic sampling of the Green's function in the Fourier domain. The wrap around error is not due to an overlap of the individual adjacent sources but berallse of the undersampling of the Green's function in the frequency domain. The replicated and overlApped one is inverse Fourier transformed Green's function rather than the source function.

  • PDF

Numerical Study on Fire Performance of Hollowcore Slabs (할로우코어 슬래브의 내화성능에 대한 수치해석 연구)

  • Min, Jeong-Ki;Woo, Young-Je
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.95-102
    • /
    • 2015
  • Numerical model on precast prestressed concrete (PC) hollowcore slabs using 11.3 mm diameter 7-wire stand was developed based on finite element analysis. In order to validate the modelling, previous experiment results with respect to prestressed solid concrete slabs were used and compared throughout the course of fire exposure. In addition to, the fire performance of hollowcore slabs with different aggregate types, moisture contents and compressive strength of concrete was investigated. As a result, it can be seen that the type of aggregates and moisture contents used in hollowcore slabs can affect the fire performance as well as temperature developments.

Enhanced Spherical Indentation Techniques for Rubber Property Evaluation (향상된 구형압입 고무 물성평가법)

  • Hwang, Kyu-Min;Oh, Jopng-Soo;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1357-1365
    • /
    • 2009
  • In this study, we enhance the numerical approach of Lee et al.$^{(1)}$ to spherical indentation technique for property evaluation of hyper-elastic rubber. We first determine the friction coefficient between rubber and indenter in a practical viewpoint. We perform finite element numerical simulations for deeper indentation depth. An optimal data acquisition spot is selected, which features sufficiently large strain energy density and negligible frictional effect. We then improve two normalized functions mapping an indentation load vs. deflection curve into a strain energy density vs. first invariant curve, the latter of which in turn gives the Yeoh-model constants. The enhanced spherical indentation approach produces the rubber material properties with an average error of less than 3%.

A Numerical Approach to Indentation Techniques for Thin-film Property Evaluation (박막 물성평가 압입시험의 수치접근법)

  • Lee, Jin-Haeng;Yu, Han-Suk;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.313-321
    • /
    • 2007
  • In this work, the prior indentation theory for a bulk material is extended to an indentation theory for evaluation of thin-film material properties. We first select the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. A new numerical approach to the thin-film indentation technique is then proposed by examining the finite element solutions at the optimal point. With this new approach, from the load-depth curve, we obtain the values of Young's modulus, yield strength, strain-hardening exponent. The average errors of those values are less than 3, 5, 8% respectively.

An Evaluation on the Seismic Stability of a Railway Bridge Pile Foundation Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 철도 교량하부 말뚝 기초의 내진 안정성 평가)

  • 이기호;신민호
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.29-40
    • /
    • 2003
  • In this study, the three dimensional pile-soil dynamic interaction analysis of the railway bridge pile foundation was performed using SASSI 2000 program and the applicability of SASSI 2000 about an evaluation of the seismic stability of a pile foundation was examined. The numerical analysis was executed on the two site of actual construction and input properties such as the acceleration of bedrock were estimated by one dimensional seismic response analysis using the Pro-SHAKE. Consequently, all the piles of the subject of investigation showed that displacement occurred within a permitted limit and the shear force and moment largely occurred at the point where the soil stiffness varied rapidly.

Structural Safety Evaluation of Yangjindang in Sang-ju Using Vibration Characteristics (동적 특성을 고려한 상주 양진당의 구조 안전성 평가)

  • Lee, Ga-Yoon;Lee, Sung-Min;Kim, Si-Yun;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Yangjindang house, which is located in Sang-ju province of South Korea, is one of the special Hanok structures dated back to Joseon dynasty. This study aims to examine structural safety of the Yangjindang wood frame building considering dynamic parameters such as the natural frequency and damping ratio. The numerical model of the wood frame building is implemented using Midas Gen, especially the wood joint where column and beam were connected. The behavior of the actual frame building was compared with the modeling results. In addition, structure responses such as shear force, axial force, flexural moment and deflections were calculated and compared with the allowable limits. Numerical results show that, generally, despite of some local members shear failure, Yangjindang's structural response does not exceed the limitation according to current standards.

Numerical Performance Evaluation of an Ultra-small Lapple Cyclone Separator (초소형 Lapple 사이클론 집진기의 수치적 성능평가)

  • Park, Sumin;Kwon, Jae-Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.90-95
    • /
    • 2020
  • The purpose of this study is to numerically evaluate the collection performance of an ultra-small Lapple cyclone separator for 1~10 ㎛ particles introduced at flow rate of 10 L/min. The numerical evaluation reveals that a static pressure drop occurs more dominantly inside of the cyclone separator than at the inlet and the vortex finder. Also a fluid flow in the cyclone separator is confirmed to have a helical structure heading upward in the center of cyclone separator and downward in the vicinity of wall. The investigation on dust collection efficiency of the Lapple cyclone separator shows that particles of 4~8 ㎛ diameters are collected at very lower efficiency than other sizes. Then, the cut-point diameter of the cyclone separator is 1.48 ㎛.

FAMILIES OF NONLINEAR TRANSFORMATIONS FOR ACCURATE EVALUATION OF WEAKLY SINGULAR INTEGRALS

  • BEONG IN YUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.3
    • /
    • pp.194-206
    • /
    • 2023
  • We present families of nonlinear transformations useful for numerical evaluation of weakly singular integrals. First, for end-point singular integrals, we define a prototype function with some appropriate features and then suggest a family of transformations. In addition, for interior-point singular integrals, we develop a family of nonlinear transformations based on the aforementioned prototype function. We take some examples to explore the efficiency of the proposed nonlinear transformations in using the Gauss-Legendre quadrature rule. From the numerical results, we can find the superiority of the proposed transformations compared to some existing transformations, especially for the integrals with high singularity strength.