• 제목/요약/키워드: numerical diffusion model

검색결과 531건 처리시간 0.025초

2차원 종형 언덕 주위의 유동 및 확산현상에 관한 수치해석 연구 (Numerical Simulations of the Flowfield and Pollutant Dispersion over 2-D Bell-Shaped Hills)

  • 박근;박원규
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.63-72
    • /
    • 1998
  • The numerical simulations of flowfield and pollutant dispersion over two-dimensional hills of various shapes are described. The Reynolds-averaged Wavier-Stokes equations and concentration diffusion equation based on the gradient diffusion theory have been applied to the atmospheric shear flow over the bell-shaped hills which are basic components of the complex terrain. The flow characteristics such as velocity profiles of the geophysical boundary layer, speed-up phenomena, mean pollutant concentration profiles are compared with experimental data to validate the present numerical procedure and it has been found that the present numerical results agree well with experiments and other numerical data. It has been also found that the distributions of ground level concentration are strongly influenced by the source location and height.

  • PDF

오사카만에서 부유토사의 확산특성에 대한 침강속도의 중요성 (Importance of the Settling Velocity on the Suspended Solids Diffusion in Osaka Bay)

  • 김종인
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.41-48
    • /
    • 2002
  • Numerical experiments are conducted using a three-dimensional baroclinic equation model and a Lagrangian method for clarifying the effect of th settling velocity on the suspended solids diffusion caused by the dredging and the reclamination works. Diffusion characteristics of the neutral particles and the weighting particles is experimented by the Lagrangian particles trajectory model, The results show that the diffusion characteristics of the suspended solids is effected by the settling velocity classified by the particles size in the density layered semi-closed bay. To estimate exactly the diffusion characteristics of the suspended solids and the contaminant with weight the three-dimensional baroclinic equation model and the three-dimensional Lagrangian particles trajectory model considering the settling velocity of the particle in the density layered semi-closed bay must be used.

빠른 입계 확산 수치 모델의 우주화학에의 적용 (Applications of the Fast Grain Boundary Model to Cosmochemistry)

  • 박창근
    • 광물과 암석
    • /
    • 제36권3호
    • /
    • pp.199-212
    • /
    • 2023
  • 확산은 지구물질은 물론 운석과 같은 우주물질의 원소 및 동위원소 연구에서 매우 유용하게 활용될 수 있다. 고온의 태양계 성운에서 일어난 확산과 상대적으로 저온의 소행성에서 일어난 열수 변질 과정에서의 확산 양상은 다르기 때문에 광물에 기록된 원소 및 동위원소 확산에 대한 모델 수립은 초기 태양계 진화를 이해하는데 있어 특히 중요하다. 광물 입자 경계를 따라 일어나는 빠른 입계 확산은 닫힌계에서 구성 광물간 원소 또는 동위원소의 교환을 수치 모델화하는데 유용하며, 본 연구에서는 유한차분법을 이용하였다. 수립된 빠른 입계 확산 수치 모델은 1) CH 콘드라이트의 아메바 형태 감람석 집합체(amoeboid olivine aggregate; AOA)내 사장석의 마그네슘-26(26Mg) 동위원소 조성 변화와 2) CO 콘드라이트의 콘드률, AOA, 기질 구성 광물간 Fe-Mg 상호 확산에 적용되었다. 빠른 입계 확산을 통해 광물 결정의 표면에서는 평형상태에 도달할 수 있다는 가정에 기반해서 평형상태 동위원소 질량 분배(equilibrium isotopic fractionation)와 평형상태 원소 분배(equilibrium partitioning)도 수치 모델에 포함하였다. 모델을 통해 닫힌계를 구성하는 구성 광물간 원소 또는 동위원소의 교환과 확산으로 실제 운석에서 관찰된 원소 및 동위원소 조성 분포를 설명할 수 있음을 보였다. 또한 암석을 구성하는 광물이 여러 종류일 경우에 폐쇄 온도는 확산이 가장 느린 광물종에 의해서만 결정되는 것이 아니라 전체 광물들의 함량비에도 크게 영향을 받는다는 것을 확인할 수 있었다.

Study on Neutralization Progress Model of Concrete with Coating Finishing Materials in Outdoor Exposure Conditions Based on the Diffusion Reaction of Calcium Hydroxide

  • Park, Jae-Hong;Hasegawa, Takuya;Senbu, Osamu;Park, Dong-Cheon
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권3호
    • /
    • pp.155-163
    • /
    • 2012
  • In order to predict the neutralization of concrete which is the reaction of carbonation dioxide from the outside and cement hydration product, such as calcium hydroxide and C-S-H, it was studied the numerical analysis method considering change of the pore structure and relative humidity during the neutralization reaction. Diffusion-reaction neutralization model was developed to predict the neutralization depth of concrete with coating finishing material. In order to build numerical analysis models considering outdoor environment and finishing materials, the adaption of proposed model was shown the results of existing outdoor exposure test results and accelerated carbonation test.

FINITE ELEMENT MODEL TO STUDY TWO DIMENSIONAL UNSTEADY STATE CYTOSOLIC CALCIUM DIFFUSION

  • Tewari, Shivendra Gajraj;Pardasani, Kamal Raj
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.427-442
    • /
    • 2011
  • Calcium is a vital second messenger for signal transduction in neurons. Calcium plays an important role in almost every part of the human body but in neuronal cytosol, it is of utmost importance. In order to understand the calcium signaling mechanism in a better way a finite element model has been developed to study the flow of calcium in two dimensions with time. This model assumes EBA (Excess Buffering Approximation), incorporating all the important parameters like time, association rate, influx, buffer concentration, diffusion constant etc. Finite element method is used to obtain calcium concentration in two dimensions and numerical integration is used to compute effect of time over 2-D Calcium profile. Comparative study of calcium signaling in two dimensions with time is done with other important physiological parameters. A MATLAB program has been developed for the entire problem and simulated on an x64 machine to compute the numerical results.

EFFECT OF HEAT ABSORPTION ON UNSTEADY MHD FLOW PAST AN OSCILLATING VERTICAL PLATE WITH VARIABLE WALL TEMPERATURE AND MASS DIFFUSION IN THE PRESENCE OF HALL CURRENT

  • RAJPUT, US;KANAUJIA, NEETU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권4호
    • /
    • pp.241-251
    • /
    • 2018
  • The present study is carried out to examine the combined effect of heat absorption on flow model. The model consists of unsteady flow of a viscous, incompressible and electrically conducting fluid. The flow is along an impulsively started oscillating vertical plate with variable mass diffusion. The magnetic field is applied perpendicular to the plate. The fluid model under consideration has been solved by Laplace transform technique. The numerical data obtained is discussed with the help of graphs and table. The numerical values obtained for skin-friction have been tabulated. To shorten the lengthy equations in the solution some symbols have been assumed, which are mentioned in appendix. The appendix is included in the article as the last section of the manuscript.

제트 확산화염구조에 대한 FDS 연소모델의 예측성능 비교 연구 (A Comparison Study of the Prediction Performance of FDS Combustion Model for the Jet Diffusion Flame Structure)

  • 박은정;오창보
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.22-27
    • /
    • 2010
  • A prediction performance of Fire Dynamics Simulator(FDS) developed by NIST for the diffusion flame structure was validated with experimental results of a laminar slot jet diffusion flame. Two mixture fraction combustion models and two finite chemistry combustion models were used in the FDS simulation for the validation of the jet diffusion flame structure. In order to enhance the prediction performance of flame structure, DNS and radiation model was applied to the simulation. The reaction rates of the finite chemistry combustion models were appropriately adjusted to the diffusion flame. The mixture fraction combustion model predicted the diffusion flame structure reasonably. A 1-step finite chemistry combustion model cannot predict the flame structure well, but the simulation results of a 2-step model were in good agreement with those of experiment except $CO_2$ concentration. It was identified that the 2-step model can be used in the investigation of flame suppression limit with further adjustment of reaction rates

적응성 유한체적법을 적용한 다차원 확산공정 모델링 (Thermal Diffusion Process Modeling with Adaptive Finite Volume Method)

  • 이준하;이흥주
    • 반도체디스플레이기술학회지
    • /
    • 제3권3호
    • /
    • pp.19-21
    • /
    • 2004
  • This paper presents a 3-dimensional diffusion simulation with adaptive solution strategy. The developed diffusion simulator VLSIDIF-3 was designed to re-refine areas. Refine scheme was calculated by the difference of doping concentration between any of two nodes. Each element is greater than tolerance and redo diffusion process until error is tolerable. Numerical experiment in low doping diffusion problem showed that this adaptive solution strategy is very efficient in both memory and time, and expected this scheme would be more powerful in complex diffusion model.

  • PDF

의사스펙트로법에 의한 대기확산형상의 수치모델(1) - 대기확산방정식과 스펙트로모델 - (Numerical Models for Atmospheric Diffusion Problems by Pseudospectral Method (1) - Atmospheric Diffusion Equations and Spectral Model -)

  • 김선태;장영기
    • 한국대기환경학회지
    • /
    • 제7권3호
    • /
    • pp.189-196
    • /
    • 1991
  • In recent years spectral methods have been found to be a powerful tool for the numerical solution of hynamic differential equations. The main attraction of spectral method is accuracy even though it is generally difficult to implement and solve the complex problems using spectral method. We introduced diffusion equations describing the state of air pollution and solved by pseutospectral method in dimensionless form. The results were compared with both those of other numerical methods and analytical solutions. Comparing with finite difference method and finite element method, spectral method shows the highest accuracy for one dimension problem in this study. Also, the results of two dimensional diffusion problems show good agreement with analytical solutions.

  • PDF

자유 평면 제트유동 해석을 위한 간혈도 난류모델의 개발 (Development of the intermittency turbulence model for a plane jet flow)

  • 조지룡;정명균
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.528-536
    • /
    • 1987
  • 본 연구에서는 간헐적인 유동에 의거한 체적 대류 모델을 설정하고, 구배 확 산 모델에 유동장의 중심부와 외부에서 서로 다른 무게값을 부여하는 혼성 확산 모델 (hybrid diffusion model)을 제안하며, 이 모델을 검증하기 위한 첫 단계로서 평면 제 트 유동에 대하여 수치 계산을 수행하다. 여기에는 간헐도에 대한 난류 전달 방정식 이 필요한데 이 방정식의 생성항(production term)은 곧 외부의 비회전 유동이 난류성 유체로 유입되는 정도를 의미하게 된다.