• 제목/요약/키워드: numerical approximation

검색결과 1,033건 처리시간 0.029초

G3 HEXIC Bézier CURVES APPROXIMATING CONIC SECTIONS

  • HYEONG MOON YOON;YOUNG JOON AHN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제28권1호
    • /
    • pp.22-32
    • /
    • 2024
  • In this paper we present a method of conic section approximation by hexic Bézier curves. The hexic Bézier approximants are G3 Hermite interpolations of conic sections. We show that there exists at least one hexic Bézier approximant for each weight of the conic section The hexic Bézier approximant depends one parameter and it can be obtained by solving a quartic polynomial, which is solvable algebraically. We present the explicit upper bound of the Hausdorff distance between the conic section and the hexic Bézier approximant. We also prove that our approximation method has the maximal order of approximation. The numerical examples for conic section approximation by hexic Bézier curves are given and illustrate our assertions.

타원형 수중천퇴상의 규칙파 및 불규칙파의 전파변형 실험(I):비쇄파조건 (Experiments for Wave Transformation of Regular and Irregular Waves over a Submerged Elliptic Shoal(I) : Non-breaking Conditions)

  • 이종인;이정욱
    • 한국해안해양공학회지
    • /
    • 제14권3호
    • /
    • pp.240-246
    • /
    • 2002
  • 타원형 천퇴해역에 대한 규칙파 및 일방향 불규칙파의 전파변형에 대한 수리모형실험을 수행하였다. 수리모형실험은 비쇄파조건의 규칙파와 천퇴의 정상부에서 부분쇄파가 발생하는 일방향 불규칙파를 대상으로 수행되었다. 수리모형실험 조건에 대해 포물형근사식을 적용한 수치해석을 수행하여 실험결과와 비교하였다.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

Analysis of Hagen-Poiseuille Flow Using SPH

  • Min, Oakkey;Moon, Wonjoo;You, Sukbeom
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.395-402
    • /
    • 2002
  • This paper shows how to formulate the transient analysis of 2-dimensional Hagen-Poiseuille flow using smoothed particle hydrodynamics (SPH). Treatments of viscosity, particle approximation and boundary conditions are explained. Numerical tests are calculated to examine effects caused by the number of particles, the number of particles per smoothing length, artificial viscosity and time increments for 2-dimensional Hagen-Poiseuille flow. Artificial viscosity for reducing the numerical instability directly affects the velocity of the flow, though effects of the other parameters do not produce as much effect as artificial viscosity. Numerical solutions using SPH show close agreement with the exact ones for the model flow, but SPH parameter must be chosen carefully Numerical solutions indicate that SPH is also an effective method for the analysis of 2-dimensional Hagen-Poiseuille flow.

과도 선형 동탄성 문제의 시간영역 유한요소해석 (A Time-Domain Finite Element Formulation for Transient Dynamic Linear Elasticity)

  • 심우진;이성희
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.574-581
    • /
    • 2001
  • Transient linear elastodynamic problems are numerically analyzed in a time-domain by the Finite Element Method, for which the variational formulation based upon the equations of motion in convolution integral is newly derived. This formulation is implicit and does not include the time derivative terms so that the computation procedure is simple and less assumptions are required comparing to the conventional time-domain dynamic numerical algorithms, being able to get the improved numerical accuracy and stability. That formulation is expanded using the semi-discrete approximation to obtain the finite element equations. In the temporal approximation, the time axis is divided equally and constant and linear time variations are assumed in those intervals. It is found that unconditionally stable numerical results are obtained in case of the constant time variation. Some numerical examples are given to show the versatility of the presented formulation.

3차원 입체요소를 사용한 정밀 전자부품의 사출성형 해석 (Numerical Analysis for Injection Molding of Precision Electronics Parts Using Three-Dimensional Solid Elements)

  • 박근;박제현;최상련
    • 소성∙가공
    • /
    • 제11권5호
    • /
    • pp.414-422
    • /
    • 2002
  • Most of numerical analyses for injection molding have been based on the Hele Shaw's approximation: two-dimensional flow analysis. In some cases, that approximation causes significant errors due to loss of geometrical information as well as simplification of the flow characteristics along the thickness direction. The present work covers numerical analyses of injection molding using three-dimensional solid elements. The accuracy of the analysis results has been verified through some numerical examples in comparison with the classical shell-based approach. The Proposed approach is then applied to predict product defects and to improve flow characteristics for a precision electronics part. In addition, design of experiment has been utilized in order to find the optimal process conditions for better product quality.

3차원 입체요소를 사용한 정밀 전자부품의 사출성형해석 (Numerical Analysis for Injection Molding of Precision Electronics Parts using Three-Dimensional Solid Elements)

  • 박근;박제현;최상련
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.68-75
    • /
    • 2002
  • Most of numerical analyses for injection molding have been based on the Hele Shaw's approximation: two-dimensional flow analysis. In some cases, that approximation causes significant errors due to loss of geometrical information as well as simplification of the flow characteristics along the thickness direction. The present work covers numerical analyses of injection molding using three-dimensional solid elements. The accuracy of the analysis results has been verified through some numerical examples in comparison with the classical shell-based approach. The proposed approach are then applied to predict product defects and to improve flow characteristics for a precision electronics part. In addition, design of experiment has been utilized in order to find the optimal process conditions for better product quality.

  • PDF

토폴로지와 수치적 정확도를 통합한 기하모델링에 관한 연구: 곡면간 교차선 (A Study on Unifying Topology and Numerical Accuracy in Geometric Modeling: Surface to Surface Intersections)

  • 고광희
    • 한국CDE학회논문집
    • /
    • 제12권5호
    • /
    • pp.344-353
    • /
    • 2007
  • In this paper, we address the problem of robust geometric modeling with emphasis on surface to surface intersections. We consider the topology and the numerical accuracy of an intersection curve to find the best approximation to the exact one. First, we perform the topological configuration of intersection curves, from which we determine the starting and ending points of each monotonic intersection curve segment along with its topological structure. Next, we trace each monotonic intersection curve segment using a validated ODE solver, which provides the error bounds containing the topological structure of the intersection curve and enclosing the exact root without a numerical instance. Then, we choose one approximation curve and adjust it within the bounds by minimizing an objective function measuring the errors from the exact one. Using this process, we can obtain an approximate intersection curve which considers the topology and the numerical accuracy for robust geometric modeling.

Development of a meshless finite mixture (MFM) method

  • Cheng, J.Q.;Lee, H.P.;Li, Hua
    • Structural Engineering and Mechanics
    • /
    • 제17권5호
    • /
    • pp.671-690
    • /
    • 2004
  • A meshless method with novel variation of point collocation by finite mixture approximation is developed in this paper, termed the meshless finite mixture (MFM) method. It is based on the finite mixture theorem and consists of two or more existing meshless techniques for exploitation of their respective merits for the numerical solution of partial differential boundary value (PDBV) problems. In this representation, the classical reproducing kernel particle and differential quadrature techniques are mixed in a point collocation framework. The least-square method is used to optimize the value of the weight coefficient to construct the final finite mixture approximation with higher accuracy and numerical stability. In order to validate the developed MFM method, several one- and two-dimensional PDBV problems are studied with different mixed boundary conditions. From the numerical results, it is observed that the optimized MFM weight coefficient can improve significantly the numerical stability and accuracy of the newly developed MFM method for the various PDBV problems.

초정밀 구조해석을 위한 수치절차의 영향 분석 (Investigation of the Effects of Some Numerical Procedure on the High Precision Structural Analysis)

  • 정강식;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.756-761
    • /
    • 2004
  • The effects of two important numerical procedures on the high precision structural analysis are investigated in this study. The two numerical procedures include continuous variable approximation and time integration. For the continuous variable approximation, polynomial mode functions generated by the Gram-Schmidt process are introduced and the numerical results obtained by employing the polynomial mode functions are compared to those obtained by classical beam mode functions. The effect of the time integration procedure on the analysis precision is also investigated. It is found that the two procedures affect the precision of structural analysis significantly.

  • PDF