• Title/Summary/Keyword: numerical analysis model

Search Result 7,859, Processing Time 0.036 seconds

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.

Numerical Analysis of Natural Convection in Room Fire (화재실내 자연대류의 수치해석)

  • Jung Gil-Soon;Lee Seung-Man;Lee Byung-Kon
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.18-25
    • /
    • 2005
  • In this study, numerical analysis of two-dimensional unsteady natural convection of air in a square enclosure heated from below, was performed as a basic research of fire science. SIMPLE algorithm was used to the pressure term of momentum equations in the numerical analysis. The numerical analysis were studied for the two model cases and two heat conditions, respectively, which are different with insulation of enclosures and position of heat applied. Also, the ceiling temperatures of enclosure were measured to compare the accuracy of numerical analysis, and it is found that the temperature predicted by numerical analysis were agreed well with the measurements. Streamline and isotherm of the each model case were acquired for each time step.

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

Prediction of dynamic behavior of full-scale slope based on the reduced scale 1 g shaking table test

  • Jin, Yong;Kim, Daehyeon;Jeong, Sugeun;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.423-437
    • /
    • 2022
  • The objective of the study is to evaluate the feasibility of the dynamic behavior of slope through both 1 g shaking table test and numerical analysis. Accelerometers were installed in the slope model with different types of seismic waves. The numerical analysis (ABAQUS and DEEPSOIL) was used to simulate 1 g shaking table test at infinite boundary. Similar Acceleration-time history, Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) were obtained, which verified the feasibility of modeling using ABAQUS and DEEPSOIL under the same size. The influence of the size (1, 2, 5, 10 and 20 times larger than that used in the 1 g shaking table test) of the model used in the numerical analysis were extensively investigated. According to the similitude law, ABAQUS was used to analyze the dynamic behavior of large-scale slope model. The 5% Damping Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) at the same proportional positions were compared. Based on the comparison of numerical analyses and 1 g shaking table tests, it was found that the 1 g shaking table test result can be utilized to predict the dynamic behavior of the real scale slope through numerical analysis.

Appicability Evaluations of Dam Breach Floodwave Models (댐 붕괴 수치모형에 대한 적용성 평가)

  • Han, Geon-Yeon;Lee, Jae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.189-198
    • /
    • 1998
  • Five dam-break floodwave models are t재 field data sets. The models included FLDWAV, SMPDBK, HEC-1, Tr66, and HEC Dimensionless Graph. The field data sets documented the disasters at Teton dam, and Yeunchun dam. The FLDWAV results are uesd to test the sensitivity of the floodwave to variations in Manning's roughness coefficient, breach size, and bottom slope. The HEC-1 analysis includes testing the sensitivity of the results to model parameters. The TR66 model and FLDWAV, with channel routing by TR66 in both cases. SMPDBK and the Dimensionless Graph procedure are applied without particular difficulties being encountered in both real world cases. It is necessary to analyze numerical limit of existing numerical models and then to apply the relatively accurate numerical model in real basin. It is found that FLDWAV model is superior in numerical accuracy and stability to any other model. This study will contribute to improve defect of numerical models and develop more precise numerical model for a efficient and rapid dam breach flood disaster predict.

  • PDF

Parametric Study on Oscillating Water Column Wave Energy Converter Applicable to Breakwater

  • Park, Sewan;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.66-77
    • /
    • 2018
  • This paper presents a parametric study on an oscillating water column (OWC) wave energy converter (WEC). This OWC has been planned for installation in the breakwaters on isolated islands located away from the mainland. Both a numerical analysis and a model experiment are utilized for determining a proper conceptual design for this purpose. Various design parameters, including the configurations and dimensions, are evaluated through the numerical analysis, which is based on a potential flow theory, and several design concepts are then selected as candidates. The model experiment using a 2D wave flume is conducted to evaluate the effects of the design parameters and compare the performances of the candidates. Based on the overall results of the numerical analysis and model experiment, a conceptual design of the OWC WEC applicable to a breakwater is selected.

Analysis on Looped Stage-Discharge Relation and Its Simulation using the Numerical Model (수치모형을 이용한 고리형 수위-유량 관계 분석)

  • Kim, Ji Sung;Kim, Won;Kim, Dong Gu;Kim, Chi Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.1-9
    • /
    • 2009
  • This study is focused on the analysis of loop characteristics of stage-discharge relation which is widely used for the production of discharge data and the simulation of loop stage-discharge relation using the numerical model. Analysis of consecutive stage and discharge data at 3 points revealed that loop of stage-discharge relationship is very strong. This means that the existing single stage-discharge relation may include large amount of error. Various flood events are simulated in mainstream of Han river with one-dimensional numerical model. The calculated stage data are compared with measured data. Especially continuous field-flow measurements concurrently collected with an Acoustic Doppler Velocity Meter (ADVM) on Hangang bridge in the case of 2007 flood event are used to verify the model applicability of estimating flows in open channels. This comparison shows that numerical model is an accurate and reliable alternative for making the real stage-discharge relation. Simulation of stage-discharge relation by a numerical model at Paldang and Hangang bridge showed good agreements with measured one, so it may be possible to generate real loop stage-discharge relation with properly calibrated and verified numerical model. It can be concluded that results of this study can contribute to error analysis of conventional single stage-discharge relation and development of loop stage-discharge relation with numerical model.

Numerical Analysis of Piezocone Test using Modified Cam-Clay Model (Modified Cam-Clay Model을 이용한 피에조콘 시험의 수치해석)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.89-99
    • /
    • 2001
  • In this study, the numerical analysis of piezocone penetration and dissipation tests has been conducted using the Modified Cam-Clay model, which is generally used in soil mechanics. The Modified Cam-Clay model and related mathematical equations in finite element derivation have been formulated in the Updated Lagrangian reference frame to take the large displacement and finite strain nature of piezocone penetration into consideration. The cone tip resistance, the pore water pressure, and the dissipation curve obtained from the finite element analysis have been compared and investigated with the experimental results from piezocone penetration test performed in Yangsan site. The numerical results showed good agreement with the experimental results; however, the better numerical simulation of the continuous and deep penetration needs further research.

  • PDF

Stability Analysis of Mooring Lines of a Submersible Fish Cage System Using Numerical Model

  • Kim, Tae-Ho;Hwang, Kyu-Serk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.690-699
    • /
    • 2011
  • A numerical model analysis was performed to analyze the stability of the mooring lines of an automatic submersible fish cage system in waves and currents. The fish cage system consisted of a 12-angled rigid frame, net cage, cover net, 12 upper floats, 12 tanks(for fixed and variable ballast), mooring lines, anchors, and a control station. Simulations were performed with the cage at the surface of the water and at a depth of 20 m. A Morison equation type model was used for simulations of the system in two configurations. The force parameters described both regular and random waves, with and without currents, and their values were input to the model. Mooring tension calculations were conducted on the mooring lines, grid lines and lower bridle lines of the cage. The stability of the mooring lines was checked under both static and dynamic conditions.

Analysis of seismic response of 3-span continuous curved bridges (3경간 연속곡선교의 지진응답 특성분석)

  • Kim, Sang-Hyo;Lee, Sang-Woo;Cho, Kwang-Il;Park, Boung-Kyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.380-387
    • /
    • 2005
  • Little has been understood about the seismic behavior of curved bridges due to the different structural characteristics compared to straight bridges. In this study, a simple numerical model, widely used for seismic analysis, is modified for a more realistic estimation of the seismic behavior. The seismic response of curved bridges obtained with the modified simple numerical model was compared with the result using a more sophisticated model to verify the feasibility. Seismic analyses were performed on three-span continuous curved bridges, which is a structural system widely used in highway structures. Numerical model of the three-span continuous curved bridges were subjected to seismic loads in diverse directions. From the result of the analysis. it was found that the direction of the seismic load have significant effect of the seismic behavior of curved bridges when the central angle exceeds 90 degrees.

  • PDF