• Title/Summary/Keyword: numerical D/B

Search Result 732, Processing Time 0.029 seconds

On the Use of Standing Oblique Detonation Waves in a Shcramjet Combustor

  • Fusina, Giovanni;Sislian, Jean P.;Schwientek, Alexander O.;Parent, Bernard
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.671-686
    • /
    • 2004
  • The shock-induced combustion ramjet (shcramjet) is a hypersonic airbreathing propulsion concept which over-comes the drawbacks of the long, massive combustors present in the scramjet by using a standing oblique detonation wave (a coupled shock-combustion front) as a means of nearly instantaneous heat addition. A novel shcramjet combustor design that makes use of wedge-shaped flameholders to avoid detonation wave-wall interactions is proposed and analyzed with computational fluid dynamics (CFD) simulations in this study. The laminar, two-dimensional Navier-Stokes equations coupled with a non-equilibrium hydrogen-air combustion model based on chemical kinetics are used to represent the physical system. The equations are solved with the WARP (window-allocatable resolver for propulsion) CFD code (see: Parent, B. and Sislian, J. P., “The Use of Domain Decomposition in Accelerating the Convergence of Quasihyperbolic Systems”, J. of Comp. Physics, Vol. 179, No. 1,2002, pages 140-169). The solver was validated with experimental results found in the literature. A series of steady-state numerical simulations was conducted using WARP and it was deter-mined by means of thrust potential calculations that this combustor design is a viable one for shcramjet propulsion: assuming a shcramjet flight Mach number of twelve at an altitude of 36,000 m, the geometrical dimensions used for the combustor give rise to an operational range for combustor inlet Mach numbers between six and eight. Different shcramjet flight Mach numbers would require different combustor dimensions and hence a variable geometry system in or-der to be viable.

  • PDF

A Study on the Thermal Elasto-Plastic Analysis of Plated Structures (판구조물의 열탄소성 해석)

  • Kim, B.I.;Jang, C.D.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.68-76
    • /
    • 1997
  • The welding-induced initial imperfections such as residual stresses and initial strains in plated structures of ships and offshore structures can be effectively evaluated by the thermal elasto-plastic analysis method proposed in this paper. In the analysis of heat conduction of plate structures, both the analytical method and the numerical method are used. For the thermal elasto-plastic analysis of plates, the finite element analysis is performed, based on the initial strain method. In the plastic domain during incremental process, the 2nd order terms of stress increments and yield stress increments were considered, so that time increment could be controlled for more stable solution. To measure temperature distribution and angular distortion of plates during welding, bead-on-plate experiment are perform with various heat input and plate thickness. Measured data show good agreement with the calculated results.

  • PDF

The Development of Tunnel Behavior Prediction System Using Artificial Neural Network (인공신경망을 이용한 터널 거동 예측 시스템 개발)

  • 이종구;문홍득;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.267-278
    • /
    • 2003
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this study, in order to predict tunnel-induced ground movements, Tunnel Behavior Prediction System (TBPS) was developed by using these artificial neural networks model, based on a Held instrumentation database (i.e. crown settlement, convergence, axial force of rock bolt, compressive and shear stress of shotcrete, stress of concrete lining etc.) obtained from 193 location data of 31 different tunnel sites where works are completed. The study and test of the network were performed by Back Propagation Algorithm which is known as a systematic technique for studying the multi-layer artificial neural network. The tunnel behaviors predicted by TBPS were compared with monitored data in the tunnel sites and numerical analysis results. This study showed that the values obtained from TBPS were within allowable limits. It is concluded that this system can effectively estimate the tunnel ground movements and can also be used f3r tunneling feasibility study, and basic and detailed design and construction of tunnel.

PLC Optical Sensor for Contamination Monitoring on the Flow-Cell in the Water Quality Measurement System (수질 측정용 플로우 셀의 오염 모니터링을 위한 평면광도파로 센서)

  • Han, Seung Heon;Kim, Tae Un;Jung, Haeng Yun;Ki, Hyun Chul;Kim, Doo Gun;Kim, Seon Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.472-476
    • /
    • 2019
  • We have proposed a novel planar lightwave circuit (PLC) optical sensor to monitor the contamination in a flow-cell where water is continuously supplied through a water quality measurement system. We designed a PLC chip with a V-shape waveguide and the simulated its function as a sensor for monitoring contamination in a flow-cell using a numerical the FDTD (finite-difference time-domain) analysis. A novel cross type of waveguide was introduced to make the PLC chip of the V-shaped waveguide. The fabricated PLC was cut into the cross waveguide. A change in the optical propagation loss of the PLC sensor was observed after immersing the PLC sensor into city water. It was determined that the propagation loss of the PLC sensor was 3 dB at a wavelength of $1.55{\mu}m$ in the city water for 15 days.

Physics study for high-performance and very-low-boron APR1400 core with 24-month cycle length

  • Do, Manseok;Nguyen, Xuan Ha;Jang, Seongdong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.869-877
    • /
    • 2020
  • A 24-month Advanced Power Reactor 1400 (APR1400) core with a very-low-boron (VLB) concentration has been investigated for an inherently safe and high-performance PWR in this work. To develop a high-performance APR1400 which is able to do the passive frequency control operation, VLB feature is essential. In this paper, the centrally-shielded burnable absorber (CSBA) is utilized for an efficient VLB operation in the 24-month cycle APR1400 core. This innovative design of the VLB APR1400 core includes the optimization of burnable absorber and loading pattern as well as axial cutback for a 24-month cycle operation. In addition to CSBA, an Er-doped guide thimble is also introduced for partial management of the excess reactivity and local peaking factor. To improve the neutron economy of the core, two alternative radial reflectors are adopted in this study, which are SS-304 and ZrO2. The core reactivity and power distributions for a 2-batch equilibrium cycle are analyzed and compared for each reflector design. Numerical results show that a VLB core can be successfully designed with 24-month cycle and the cycle length is improved significantly with the alternative reflectors. The neutronic analyses are performed using the Monte Carlo Serpent code and 3-D diffusion code COREDAX-2 with the ENDF/B-VII.1.

Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation

  • Guenaneche, B.;Benyoucef, S.;Tounsi, A.;Adda Bedia, E.A.
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.151-166
    • /
    • 2019
  • This paper introduces a new efficient analytical method, based on shear deformations obtained with 2D elasticity theory approach, to perform an explicit closed-form solution for calculation the interfacial shear and normal stresses in plated RC beam. The materials of plate, necessary for the reinforcement of the beam, are in general made with fiber reinforced polymers (Carbon or Glass) or steel. The experimental tests showed that at the ends of the plate, high shear and normal stresses are developed, consequently a debonding phenomenon at this position produce a sudden failure of the soffit plate. The interfacial stresses play a significant role in understanding this premature debonding failure of such repaired structures. In order to efficiently model the calculation of the interfacial stresses we have integrated the effect of shear deformations using the equilibrium equations of the elasticity. The approach of this method includes stress-strain and strain-displacement relationships for the adhesive and adherends. The use of the stresses continuity conditions at interfaces between the adhesive and adherents, results pair of second-order and fourth-order coupled ordinary differential equations. The analytical solution for this coupled differential equations give new explicit closed-form solution including shear deformations effects. This new solution is indented for applications of all plated beam. Finally, numerical results obtained with this method are in agreement of the existing solutions and the experimental results.

Optimization of Formulation Condition for Muffins with Added Broccoli Powder (브로콜리 가루 첨가 머핀 제조 조건의 최적화)

  • Shin, Ji-Hun;Yeon, Ryu-Seung;Lee, Sun-Mee;Jeong, Hee-Sun;Paik, Jae-Eun;Joo, Na-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.5
    • /
    • pp.621-628
    • /
    • 2008
  • The principal objective of this study was to develop the optimal recipe for muffins containing dried broccoli powder. In this study, broccoli powder was substituted for wheat flour in order to reduce its content. The study was conducted by determining the optimal sensory composite recipe, by preparing muffins with different levels of broccoli powder (A), sugar (B), and butter (C), by C.C.D (Central composite design) and performing sensory evaluation and analysis via RSM (Response surface methodology). The sensory measurements yielded significant values for appearance, flavor (p<0.01), texture (p<0.05), overall quality (p<0.05) and color (p<0.05), whereas instrumental measurements yielded significant values in lightness (p<0.01), redness (p<0.05), yellowness, baking loss rate (p<0.05), hardness (p<0.05), cohesiveness (p<0.01) and gumminess (p<0.05). The optimum formulations processed by numerical and graphical optimization were determined as 13.58g of broccoli powder, 92.02g of sugar, and 71.97g of butter.

Development of Hydrodynamic Capacity Evaluation Method for a Vertical-Axis Tidal Stream Turbine (수직축 조류발전 터빈의 유체공학적 용량 산정기법 개발)

  • Lee, D.H;Hyun, B.S.;Lee, J.K.;Kim, M.C.;Rhee, S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.142-149
    • /
    • 2012
  • This study deals with the investigation of the scale effect for the vertical-axis tidal stream turbine by evaluating the hydrodynamic efficiency of turbine rotors of different diameters at different flow conditions. Numerical analyses are made for the turbine rotors with a same shape, but different sizes obtained using the diameter evaluation equation suggested in this paper. It is shown that the performance of turbine is clearly dependent upon the rotor size and inflow velocity, i.e. Reynolds number dependency of different-scaled turbines showing better efficiency with increasing Reynolds number. The sudden decrease of efficiency is also noticed around the transition region of Reynolds number. The hydrodynamic capacity evaluation method needed at initial stage of turbine design is suggested and exercised with some test cases. It is recommended that the method is expected to be useful for turbines with demanding powers between 10 kW and 300 kW.

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Flow and Mixing Behavior at the Tidal Reach of Han River (한강 감조구간에서의 흐름 및 혼합거동)

  • Seo, Il Won;Song, Chang Geun;Lee, Myung Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.731-741
    • /
    • 2008
  • Previous studies on the numerical simulation at the tidal reach of Han River tend to restrict downstream boundary as Jeon-ryu station due to difficulties in gaining cross section data and tidal elevation values at Yu-do. But, in this study, geometries beyond the confluence of Gok-reung stream and Im-jin River are constructed based on the numerical sea map; tidal elevation at the downstream boundary, Yu-do is estimated by harmonic analysis of In-cheon tide gage station so that hydrodynamic and diffusion behavior have been analyzed. The domain ranging from Shin-gok submerged weir to Yu-do is selected (which is 36.8 km in length). RMA-2 and RAM4 developed by Il Won Seo (2008) are applied to simulate flow and diffusion behavior, respectively. Numerical results of flow characteristic are compared with the measured data at Jeon-ryu station. Simulation is carried out from June 23 to 25 in 2006 on the ground that hydrologic data is satisfactory and tidal difference is huge during that period. The result shows that reverse flow occurs 5 times according to the tidal elevation at Yu-do and the maximum reverse flow is observed up to Jang-hang IC, which is 32.9 km in length. Also analysis is focused on the process of generation and disappearance of reverse flow, the distribution of water surface elevation and velocity along the maximum velocity line, and the transport of nonconservative pollutant. Pollutant injected from Gul-po stream spreads widely across the river; however, the size of BOD cloud entering from Gok-reung stream is relatively small because water depth at the mid and left side becomes deeper and maximum velocity occurs along the right bank so that transverse mixing is completed quickly. Finally, mixing characteristic of horizontal salinity distribution is obtained by estimating the salinity input with analytical solution of 1D advection-dispersion equation.