• Title/Summary/Keyword: numbers and operations

Search Result 301, Processing Time 0.025 seconds

Effective Teaching Method for Errors Patterns in Numbers and Operations of Elementary Mathematics (수와 연산영역의 오류유형에 따른 효과적인 지도 방안)

  • Jang, Su-Yeon;Ahn, Byoung-Gon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.355-376
    • /
    • 2010
  • This research was about analyzing students' major error types in the field of elementary 1st grade mathematics numbers and operations, and formulating and applying effective teaching methods to find out their effects. Among the errors the students were making, it was found that in the field of numbers there was more than 50% chance of making calculation mistakes in 50 rounds of rational counting. Also, in the field of operations, it was discovered that most of students' mistakes had to do with subtraction. The results from the classification of the 4 types of error showed that most errors were made from having inaccurate concept of knowledge and definition. Thus, it can be concluded that when elementary 1st grade teachers teach students mathematics, it is most important that they put best effort into firmly establishing the students fundamental concept, definition, facts, and functions. For that matter, students were interviewed one by one, and by implementing learning method using some concrete materials as tools, students were able to fix their own errors. More importantly, students were able to gain interest and become more willing to participate by joining in this program, which led to more effective guidance.

  • PDF

Examining Students' Mathematical Learning through Worked-Out Examples on Numbers (Worked-out Example을 통한 중학생들의 수에 대한 학습)

  • Lee, Il Woong;Kim, Gooyeon
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.2
    • /
    • pp.291-319
    • /
    • 2014
  • The purpose of this study is to investigate students' thinking and understanding through working on Worked-out Examples on numbers and operations, specifically, radical and real numbers and operations in the middle grades. For this purpose, we developed a set of Worked-out Examples; middle school students independently worked on them. Then two students were interviewed. These data were analyzed by using the framework of mathematical proficiency. The data analysis suggested that the students seemed to go through the processes involving a combination of understanding and computation, computation and reasoning, and understanding, computation and reasoning. Also, it appeared that most of the students have difficult solving problems involving with radical and real numbers in related to strategic competence.

  • PDF

THE COMPLETION OF SOME METRIC SPACE OF FUZZY NUMBERS

  • Choi, Hee-Chan
    • The Pure and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 1995
  • D. Dubois and H. Prade introduced the notions of fuzzy numbers and defined its basic operations [3]. R. Goetschel, W. Voxman, A. Kaufmann, M. Gupta and G. Zhang [4,5,6,9] have done much work about fuzzy numbers. Let $\mathbb{R}$ the set of all real numbers and $F^{*}(\mathbb{R})$ all fuzzy subsets defined on $\mathbb{R}$. G. Zhang [8] defined the fuzzy number $\tilde{a}\;\in\;F^{*}(\mathbb{R})$ as follows : (omitted)

  • PDF

The Extended Operations for Generalized Quadratic Fuzzy Sets

  • Yun, Yong-Sik;Park, Jin-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.592-595
    • /
    • 2010
  • The extended algebraic operations are defined by applying the extension principle to normal algebraic operations. And these operations are calculated for some kinds of fuzzy numbers. In this paper, we get exact membership function as a results of calculation of these operations for generalized quadratic fuzzy sets.

대수체계의 발견에 관한 수학사적 고제

  • 한재영
    • Journal for History of Mathematics
    • /
    • v.15 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • It will be described the discovery of fundamental algebras such as complex numbers and the quaternions. Cardano(1539) was the first to introduce special types of complex numbers such as 5$\pm$$\sqrt{-15}$. Girald called the number a$\pm$$\sqrt{-b}$ solutions impossible. The term imaginary numbers was introduced by Descartes(1629) in “Discours la methode, La geometrie.” Euler knew the geometrical representation of complex numbers by points in a plane. Geometrical definitions of the addition and multiplication of complex numbers conceiving as directed line segments in a plane were given by Gauss in 1831. The expression “complex numbers” seems to be Gauss. Hamilton(1843) defined the complex numbers as paire of real numbers subject to conventional rules of addition and multiplication. Cauchy(1874) interpreted the complex numbers as residue classes of polynomials in R[x] modulo $x^2$+1. Sophus Lie(1880) introduced commutators [a, b] by the way expressing infinitesimal transformation as differential operations. In this paper, it will be studied general quaternion algebras to finding of algebraic structure in Algebras.

  • PDF

TianYuanShu and Numeral Systems in Eastern Asia (천원술(天元術)과 기수법(記數法))

  • Hong, Sung Sa;Hong, Young Hee;Lee, Seung On
    • Journal for History of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.1-10
    • /
    • 2012
  • In Chinese mathematics, there have been two numeral systems, namely one in spoken language for recording and the other by counting rods for computations. They concerned with problems dealing with practical applications, numbers in them are concrete numbers except in the process of basic operations. Thus they could hardly develop a pure theory of numbers. In Song dynasty, 0 and TianYuanShu were introduced, where the coefficients were denoted by counting rods. We show that in this process, counting rods took over the role of the numeral system in spoken language and hence counting rod numeral system plays the role of that for abstract numbers together with the tool for calculations. Decimal fractions were also understood as denominate numbers but using the notions by counting rods, decimals were also admitted as abstract numbers. Noting that abacus replaced counting rods and TianYuanShu were lost in Ming dynasty, abstract numbers disappeared in Chinese mathematics. Investigating JianJie YiMing SuanFa(簡捷易明算法) written by Shen ShiGui(沈士桂) around 1704, we conclude that Shen noticed repeating decimals and their operations, and also used various rounding methods.

전통적 교구에 숨어있는 수의 재해석

  • 고상숙
    • Journal for History of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.27-44
    • /
    • 2003
  • The article is to understand the meaning of numbers on the cuboctahedron which was used in the United Shilla and to find the way to apply it into our current school curriculum. We want to reinterpret the meaning of tile numbers on this cuboctahedron. Also, we introduce this meaning to Symbols and Expressions in the 7th-grade math and expand it to Operations of Polynomials.

  • PDF

The Analysis of Children's Understanding of Operations on Whole Numbers (자연수의 사칙연산에 대한 아동의 이해 분석)

  • Whang, Woo-Hyung;Kim, Kyung-Mi
    • The Mathematical Education
    • /
    • v.47 no.4
    • /
    • pp.519-543
    • /
    • 2008
  • The study has been conducted with 29 children from 4th to 6th grades to realize how they understand addition, subtraction, multiplication, and division of whole numbers, and how their understanding influences solving of one-step word problems. Children's understanding of operations was categorized into "adding" and "combination" for additions, "taking away" and "comparison" for subtractions, "equal groups," "rectangular arrange," "ratio," and "Cartesian product" for multiplications, and "sharing," "measuring," "comparison," "ratio," "multiplicative inverse," and "repeated subtraction" for divisions. Overall, additions were mostly understood additions as "adding"(86.2%), subtractions as "taking away"(86.2%), multiplications as "equal groups"(100%), and divisions as "sharing"(82.8%). This result consisted with the Fischbein's intuitive models except for additions. Most children tended to solve the word problems based on their conceptual structure of the four arithmetic operations. Even though their conceptual structure of arithmetic operations helps to better solve problems, this tendency resulted in wrong solutions when problem situations were not related to their conceptual structure. Children in the same category of understanding for each operations showed some common features while solving the word problems. As children's understanding of operations significantly influences their solutions to word problems, they needs to be exposed to many different problem situations of the four arithmetic operations. Furthermore, the focus of teaching needs to be the meaning of each operations rather than computational algorithm.

  • PDF

Fostering Algebraic Reasoning Ability of Elementary School Students: Focused on the Exploration of the Associative Law in Multiplication (초등학교에서의 대수적 추론 능력 신장 방안 탐색 - 곱셈의 결합법칙 탐구에 관한 수업 사례 연구 -)

  • Choi, Ji-Young;Pang, Jeong-Suk
    • School Mathematics
    • /
    • v.13 no.4
    • /
    • pp.581-598
    • /
    • 2011
  • Given the growing agreement that algebra should be taught in the early stage of the curriculum, considerable studies have been conducted with regard to early algebra in the elementary school. However, there has been lack of research on how to organize mathematic lessons to develop of algebraic reasoning ability of the elementary school students. This research attempted to gain specific and practical information on effective algebraic teaching and learning in the elementary school. An exploratory qualitative case study was conducted to the fourth graders. This paper focused on the associative law of the multiplication. This paper showed what kinds of activities a teacher may organize following three steps: (a) focus on the properties of numbers and operations in specific situations, (b) discovery of the properties of numbers and operations with many examples, and (c) generalization of the properties of numbers and operations in arbitrary situations. Given the steps, this paper included an analysis on how the students developed their algebraic reasoning. This study provides implications on the important factors that lead to the development of algebraic reasoning ability for elementary students.

  • PDF

A Study on the Theoretical Background of the Multiplication of Rational Numbers as Composition of Operators (두 조작의 합성으로서의 유리수 곱의 이론적 배경 고찰)

  • Choi, Keunbae
    • East Asian mathematical journal
    • /
    • v.33 no.2
    • /
    • pp.199-216
    • /
    • 2017
  • A rational number as operator is eventually that it is considered a mapping. Depending on how selecting domain (the target of operation by rational number) and codomain (including the results of operations by rational number), it is possible to see the rational in two aspects. First, rational numbers can be deal with functions if we choose the target of operation by rational number as a number field containing rationals. On the other hand, if we choose the target of operation by rational number as integral domain $\mathbb{Z}$, then rational numbers can be regarded as partial functions on $\mathbb{Z}$. In this paper, we regard the rational numbers with a view of partial functions, we investigate the theoretical background of the relationship between the multiplication of rational numbers and the composition of rational numbers as operators.