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THE COMPLETION OF SOME METRIC
SPACE OF FUZZY NUMBERS

HEE CHAN CHOI

1. Introduction

D. Dubois and H. Prade introduced the notions of fuzzy numbers and defined its
basic operations [3]. R. Goetschel, W. Voxman, A. Kaufmann, M. Gupta and G.
Zhang (4,5, 6,9] have done much work about fuzzy numbers.

Let R be the set of all real numbers and F*(R) all fuzzy subsets defined on R.
G. Zhang [8] defined the fuzzy number @ € F*(R) as follows :

(1) @ is normal,

(2) for every A € (0, 1], ax= {z|a(z) > A} is a closed interval, denoted by
oz at].

Now, let us denote the set of all fuzzy numbers defined by G. Zhang as F(R).

The purpose of this paper is to prove that the metric space (F(R),8) can be
completed by using the equivalence classes of Cauchy sequences, where § is defined
by é(a, 5) = sup d(ay,by). In section 2, we quote basic definitions and theorems

0<A<1

from {1} which will be needed in the proof of main theorem. In section 3, after
defining the isometry and the completion concepts, we prove main theorem :

* The metric space (F(R),6) has a completion (F(R),4) which has a subspace
X that is isometric with F(R) and is dense in F(R). This space (F(R), 4) is unique
except for isometries..

2. Basic definitions and results of fuzzy numbers
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In this section, we quote basic definitions and theorems from [1] which will be
needed in the proof of main theorem.

Let R be the set of all real numbers and F*(R) all fuzzy subsets defined on R.
Definition 2.1. Let @ € F*(R). d is called a fuzzy number if @ has the properties :

(1) @ is normal, i.e., there exists z € R such that d(z) = 1,

(2) whenever A € (0, 1], ax = {z|a(z) > A} is a closed interval, denoted by
a5, aX]-

Let F(R) be the set of all fuzzy numbers on the real line R.

If we define a(z) by

i(z) =1 for z =k,
=0 forz#k (ke€R),

then @ € F(R) and ay = [k, k]. In here, we can see that any real number is a fuzzy
numbers.

Definition 2.2. Let d,5,é € F(R). We say that & = & + b if for every A €
0,1)], ¢ = a +b; and c')t' = a:{' + b:\". We say that é = @ — b if for every
A€ (0,1], ¢ =ay —bf andcf =af —b;. For every k € R and & € F(R), we
say that & = ka if for every A € (0, 1], ¢y = kay, ¢t = kal for k > 0, and
cy = kai’, c')'" = ka, for k <0.

Note that we can find in [7] the definitions of multiplication, division, maximal
and minimal operations of the fuzzy numbers.

Definition 2.3. Let @,b € F(R). We say that @ < b if for every X € (0, 1], aj <
by and at < b, We say that @ < b if @ < b and there exists A € (0, 1] such that
a, <by ora:\"<b'>'". Wesaythat&:i) fa<b and b <a.

Definition 2.4. For two closed intervals ax = [a},af], by = [b},b]], we define a
metric (distance) d of ay, by as follows :

d(ax, bx) = max(|a3 — b3 1, a¥ — b3 1)
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Definition 2.5. A metric (distance) § of F(R) is a function § : F(R) x F(R) = R
with the properties :

(1) 6(abd) >0, @=bif and only if §(a,5) =0,
(2) 8(a3) = 8(5,3), ~ ~
(3) for every ¢ € F(R), we have §(a,b) < é(a, €) + 6(E,b).

When § is a metric of F(R), we call (F(R),§) a metric space of F(R) with the
metric 6.

We define

6(a,b) = 5y d(ax, by). (*)

Theorem 2.6. §(i,b) defined by the equality () is a metric of F(R).

Theorem 2.7. For every &,b,¢ € F(R), k € R, we have

(1) 6@@+b, a+d) =60, o),

(2) 6(a—b, a—¢)=46(b, ¢),

(3) &(ka, kb) = |k| 6(a, b), _ .

(4) If a<b<gé,thené(a, b)<é(q, &), 6(b, &) <é(a, &).
Definition 2.8. Let {d,} C F(R), @ € F(R). A sequence {d,} is said to converge
to @ in the metric §, denoted by

m d,=@ or ap—a asn — o0,
n—oo

if for any £ > 0 there exists an integer N > 0 such that 6(d,,a) < ¢ for n > N.
Theorem 2.9. Let {d,},{b.} C F(R), &,b € F(R),k € R. I lim d, = & and
lim b, = 5, then

n—o0
(1) lim (&p £ b,) = &=+ } (the same order of sign),
(2) lim (kan) = ka.
n—oo

Theorem 2.10. Let lim &, =&, lm b, =b. Then

n—0oC n—oo

lim 6(@n,ba) = 6(,).
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Definition 2.11. A sequence {@,} of F(R) is said to be a Cauchy sequence if for
every € > 0 there exists an integer N > 0 such that §(@,,dm,) < € for n, m > N.

If a metric space has the property that every Cauchy sequence converges, the
space is called a complete metric space.

Theorem 2.12. The metric space (F(R), §) is complete.

3. Main theorem

In thjs section, we prove that the metric space (F(R), §) has a completion
(F(R), 6).

Definition 3.1. [2] Let X; = (X}, d1), X2 = (X2, d2) be metric spaces. Then,
(a) A mapping f of X; into X, is said to be isometric or an isometry if f
preserves distances, that is, if for all z, y € X1, d2(f(z), f(y)) = di(z, v),
where f(z) and f(y) are the images of ¢ and y respectively.
(b) The space X; is said to be isometric with the space X, if there exists a

bijective isometry of X; onto X3. The spaces X; and X2 are then called
isometric spaces.

Definition 3.2. [2] The complete metric space (X7, d}) is said to be a completion
of the given metric space (Xi1,d,) if

(1) (X1,d1) is isometric with a subspace (X1,d}) of (X7, d}),

(2) X is dense in X7, i.e., the closure of X, X = X7.

MAIN Theorem. The metric space (F(R), §) has a completion (F(R), §) which
has a subspace X that is isometric with F(R) and is dense in F(R). This space
(F(R), 6) is unique except for isometries, that is, if (F(R), §) is another completion
having a dense subspace Y isometric with F(R), then F(R) and F(R) are isometric.

Proof. The proof is somewhat lengthy. We divide it into four steps (a) to (d).
We construct :
(@) FR) = (F(R),?), o
(b) an isometry f of F(R) onto X, where X = F(R).
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Then we prove :

(¢) completeness of F(R),
(d) uniqueness of F(R) except for isometries.

(a). Construction of F(R) = (F(R), 8).
Let {#,} and {&!,} be Cauchy sequences in F(R). Define {Z,} to be equivalent
to {Z!,} written {Z,} ~ {2}, if

lim 6(2q, &,) = 0. (1)

Let F(R) be the set of all equivalence classes Z, §, --- of Cauchy sequences thus

obtained. We write {Z,} € £ to mean that {#,} is a member of  (a representative
of the class ). We now set

§(, 9) = lim &(én, Gn) (2)
where {Z,} € £ and {§n} € §. We show that this limit exists. We have
8(Zn, Gn) < 8(&n, Em) + 6(Em) Gm) + 8(§m) Fn),
hence we obtain
6(Zns Gn) — 6(Em, Gm) < 8(Zn, Em) + 8(fm, Tn)
and a similar inequality with m and n interchanged. Together,
[6(Zn, Gn) = 6(Fm, Gm)| < 6(Zn, Em) + 6(fm, §n)- 3)
Since {5} and {§»} are Cauchy, we can make the right side as small as we please.
This implies that the limit in (2) exists because (F(R), §) is complete.
We must also show that the limit in (2) is independent of the particular choice

of representatives. In fact, if {#,} ~ {Z!,} and {g.} ~ {7..}, then by (1), (3),

6(Zn, §n) — 6(Zn, Gn)| < 6(Zn, &) + 8(Gn, o) — 0
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as n — 00, which implies the assertion
Jm 8(zn, Gu) = Jim 8(35, 70
We prove that é in (2) is a metric on F(R). Obviously, Shsatisﬁes 8(&, §) > 0 (see
Definition of §(%, §)) as well as 6(&, &) =0 and &(%, §) = (9, ). Furthermore,
§,9)=0 = {&)}~{l)} = &=y
gives 8(%, §) =0 ¢ & = ¢, and the triangle inequality for 6 follows from
8(Zny Gn) < 6(n, Zn) + 6(Zn, Gn)

by letting n — oo.

(b). Construction of an isometry f : F(R) — X c F(R).

With each @ € F(R) we associate the class & € F(R) which contains the constant
Cauchy sequence {a, d,---}. This defines a mapping f : F(R) — X onto the
subspace X = f(F(R)) C F(R). The mapping f is given by & +— & = f(&), where
{a, @, ---} € &. We see that f is an isometry since (2) becomes simply

6(2, §) = 6(a, b),

here b is the class of {{/n} where §, = b for all n. Any isomerty is injective, and
f: F(R) — X is surjective since f(F(R)) = X. Hence X and F(R) are isometric.

We show that X is dense in F(R). We consider any # € F(R). Let {Z,} € 3.
For every € > 0 there is an integer N > 0 such that

8(Zn, Tn) <e/2 forn > N.
Let {Zn, ZN, -} € Zn. Then Zy € X. By (2),
6(#, 2n) = lim 6(n, in) <e/2<e.

This shows that every e-neighborhood of the arbitrary & € F(R) cotains an element
of X. Hence X is dense in F(R).
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(¢). Completeness of F'(R).

Let {#,} be any Cauchy sequence in F(R). Since X is dense in F(R), for every
£n € F(R) there is a %, € X such that

1

S(in, sn) < I'_z'-

(4)

Hence, by the triangle inequality,
6(3ms 2n) < 6(m, Em) + 8(Bmy ) + 8(Zn, 2n)
1 - R 1
m n

and this is less than any given ¢ > 0 for sufficiently large m and n because {2}
is Cauchy. Hence {2,,} is Cauchy. Since f : F(R) — X is isometric and 2, € X,
the sequence {3,,}, where Zp, = f~}(%,), is Cauchy in F(R). Let & € F(R) be the
class to which {Z,,} belongs. We show that & is the limit of {Z,}. By (4),

1 ,.
< - + 6(%n, Z). (5)

Since {#m} € & € F(R) and 2, € X, so that {5, Zp, -} € 2y, the inequality (5)
becomes )
8(8n, &) < = + Lim (%, Zm)
n m—o00

and the right side is smaller than any given ¢ > 0 for sufficiently large n. Hence
the arbitrary Cauchy sequence {%,} in F(R) has the limit # € F(R), and F(R) is
complete.

(d). Uniqueness of F(R) except for isometries.

If (F(R), é) is another completion with a subspace Y dense in F(R) and isometric
with F(R), then for any #, § € F(R) we have sequences {#,}, {§} in Y such that
&, — & and ¥, — y. Hence we have

6(2, 9) < 8(%, #n) + 6(Zn, Gn) + 8(Fn, ¥)
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for every n, where {&,, Zn, '} € Z, and {gn, Jn, -} € Yn. Since it is true for
every n, it is true in the limit as n becomes infinite, which yields

82, 9) < lim &(Zn, §n)-
n—00

But §(Fn, Gn) < 8(Zn, &) + 6(F, 9) + 6(3, Gn)

which yields the reverse inequality. Hence

6(2, 7) = lim 6(Z., §n).
n—oo
In a completly analogous manner, we can also show that

6(2, §) = lim 6(zn, Gun).

Consequently,

5(‘%? g) = 5(53’ g)a

that is, the distance on F(R) and F(R) must be the same. Hence F(R) and F(R)
are isometric. O

1.
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