The Pure and Applied Mathematics 2 (1995), No 1, pp. 9-16 J. Korea Soc. of Math. Edu. (Series B)

THE COMPLETION OF SOME METRIC SPACE OF FUZZY NUMBERS

HEE CHAN CHOI

1. Introduction

D. Dubois and H. Prade introduced the notions of fuzzy numbers and defined its basic operations [3]. R. Goetschel, W. Voxman, A. Kaufmann, M. Gupta and G. Zhang [4,5,6,9] have done much work about fuzzy numbers.

Let \mathbb{R} be the set of all real numbers and $F^*(\mathbb{R})$ all fuzzy subsets defined on \mathbb{R} . G. Zhang [8] defined the fuzzy number $\tilde{a} \in F^*(\mathbb{R})$ as follows:

- (1) \tilde{a} is normal,
- (2) for every $\lambda \in (0, 1]$, $a_{\lambda} = \{x \mid \tilde{a}(x) \geq \lambda\}$ is a closed interval, denoted by $[a_{\lambda}^{-}, a_{\lambda}^{+}]$.

Now, let us denote the set of all fuzzy numbers defined by G. Zhang as $F(\mathbb{R})$.

The purpose of this paper is to prove that the metric space $(F(\mathbb{R}), \delta)$ can be completed by using the equivalence classes of Cauchy sequences, where δ is defined by $\delta(\tilde{a}, \tilde{b}) = \sup_{0 < \lambda \le 1} d(a_{\lambda}, b_{\lambda})$. In section 2, we quote basic definitions and theorems

from [1] which will be needed in the proof of main theorem. In section 3, after defining the isometry and the completion concepts, we prove main theorem:

The metric space $(F(\mathbb{R}), \delta)$ has a completion $(\hat{F}(\mathbb{R}), \hat{\delta})$ which has a subspace X that is isometric with $F(\mathbb{R})$ and is dense in $\hat{F}(\mathbb{R})$. This space $(\hat{F}(\mathbb{R}), \hat{\delta})$ is unique except for isometries.

2. Basic definitions and results of fuzzy numbers

Typeset by A_MS -TEX

In this section, we quote basic definitions and theorems from [1] which will be needed in the proof of main theorem.

Let \mathbb{R} be the set of all real numbers and $F^*(\mathbb{R})$ all fuzzy subsets defined on \mathbb{R} .

Definition 2.1. Let $\tilde{a} \in F^*(\mathbb{R})$. \tilde{a} is called a fuzzy number if \tilde{a} has the properties:

- (1) \tilde{a} is normal, i.e., there exists $x \in \mathbb{R}$ such that $\tilde{a}(x) = 1$,
- (2) whenever $\lambda \in (0, 1]$, $a_{\lambda} = \{x \mid \tilde{a}(x) \geq \lambda\}$ is a closed interval, denoted by $[a_{\lambda}^-, a_{\lambda}^+]$.

Let $F(\mathbb{R})$ be the set of all fuzzy numbers on the real line \mathbb{R} .

If we define $\tilde{a}(x)$ by

$$\tilde{a}(x) = 1$$
 for $x = k$,
= 0 for $x \neq k$ $(k \in \mathbb{R})$,

then $\tilde{a} \in F(\mathbb{R})$ and $a_{\lambda} = [k, k]$. In here, we can see that any real number is a fuzzy numbers.

Definition 2.2. Let $\tilde{a}, \tilde{b}, \tilde{c} \in F(\mathbb{R})$. We say that $\tilde{c} = \tilde{a} + \tilde{b}$ if for every $\lambda \in (0, 1]$, $c_{\lambda}^{-} = a_{\lambda}^{-} + b_{\lambda}^{-}$ and $c_{\lambda}^{+} = a_{\lambda}^{+} + b_{\lambda}^{+}$. We say that $\tilde{c} = \tilde{a} - \tilde{b}$ if for every $\lambda \in (0, 1]$, $c_{\lambda}^{-} = a_{\lambda}^{-} - b_{\lambda}^{+}$ and $c_{\lambda}^{+} = a_{\lambda}^{+} - b_{\lambda}^{-}$. For every $k \in \mathbb{R}$ and $\tilde{a} \in F(\mathbb{R})$, we say that $\tilde{c} = k\tilde{a}$ if for every $\lambda \in (0, 1]$, $c_{\lambda}^{-} = ka_{\lambda}^{-}$, $c_{\lambda}^{+} = ka_{\lambda}^{+}$ for $k \geq 0$, and $c_{\lambda}^{-} = ka_{\lambda}^{+}$, $c_{\lambda}^{+} = ka_{\lambda}^{-}$ for k < 0.

Note that we can find in [7] the definitions of multiplication, division, maximal and minimal operations of the fuzzy numbers.

Definition 2.3. Let $\tilde{a}, \tilde{b} \in F(\mathbb{R})$. We say that $\tilde{a} \leq \tilde{b}$ if for every $\lambda \in (0, 1]$, $a_{\lambda}^{-} \leq b_{\lambda}^{-}$ and $a_{\lambda}^{+} \leq b_{\lambda}^{+}$. We say that $\tilde{a} < \tilde{b}$ if $\tilde{a} \leq \tilde{b}$ and there exists $\lambda \in (0, 1]$ such that $a_{\lambda}^{-} < b_{\lambda}^{-}$ or $a_{\lambda}^{+} < b_{\lambda}^{+}$. We say that $\tilde{a} = \tilde{b}$ if $\tilde{a} \leq \tilde{b}$ and $\tilde{b} \leq \tilde{a}$.

Definition 2.4. For two closed intervals $a_{\lambda} = [a_{\lambda}^{-}, a_{\lambda}^{+}], b_{\lambda} = [b_{\lambda}^{-}, b_{\lambda}^{+}],$ we define a metric (distance) d of a_{λ}, b_{λ} as follows:

$$d(a_{\lambda}, b_{\lambda}) = \max(|a_{\lambda}^{-} - b_{\lambda}^{-}|, |a_{\lambda}^{+} - b_{\lambda}^{+}|).$$

Definition 2.5. A metric (distance) δ of $F(\mathbb{R})$ is a function $\delta: F(\mathbb{R}) \times F(\mathbb{R}) \to \mathbb{R}$ with the properties:

- (1) $\delta(\tilde{a}, \tilde{b}) \geq 0$, $\tilde{a} = \tilde{b}$ if and only if $\delta(\tilde{a}, \tilde{b}) = 0$,
- (2) $\delta(\tilde{a}, \tilde{b}) = \delta(\tilde{b}, \tilde{a}),$
- (3) for every $\tilde{c} \in F(\mathbb{R})$, we have $\delta(\tilde{a}, \tilde{b}) \leq \delta(\tilde{a}, \tilde{c}) + \delta(\tilde{c}, \tilde{b})$.

When δ is a metric of $F(\mathbb{R})$, we call $(F(\mathbb{R}), \delta)$ a metric space of $F(\mathbb{R})$ with the metric δ .

We define

$$\delta(\tilde{a}, \tilde{b}) = \sup_{0 < \lambda \le 1} d(a_{\lambda}, b_{\lambda}). \tag{*}$$

Theorem 2.6. $\delta(\tilde{a}, \tilde{b})$ defined by the equality (\star) is a metric of $F(\mathbb{R})$.

Theorem 2.7. For every $\tilde{a}, \tilde{b}, \tilde{c} \in F(\mathbb{R}), k \in \mathbb{R}$, we have

- (1) $\delta(\tilde{a} + \tilde{b}, \ \tilde{a} + \tilde{c}) = \delta(\tilde{b}, \ \tilde{c}),$
- (2) $\delta(\tilde{a} \tilde{b}, \ \tilde{a} \tilde{c}) = \delta(\tilde{b}, \ \tilde{c}),$
- (3) $\delta(k\tilde{a}, k\tilde{b}) = |k| \delta(\tilde{a}, \tilde{b}),$
- (4) If $\tilde{a} \leq \tilde{b} \leq \tilde{c}$, then $\delta(\tilde{a}, \tilde{b}) \leq \delta(\tilde{a}, \tilde{c})$, $\delta(\tilde{b}, \tilde{c}) \leq \delta(\tilde{a}, \tilde{c})$.

Definition 2.8. Let $\{\tilde{a}_n\} \subset F(\mathbb{R}), \ \tilde{a} \in F(\mathbb{R})$. A sequence $\{\tilde{a}_n\}$ is said to converge to \tilde{a} in the metric δ , denoted by

$$\lim_{n\to\infty} \tilde{a}_n = \tilde{a} \quad \text{ or } \quad \tilde{a}_n \to \tilde{a} \text{ as } n \to \infty,$$

if for any $\varepsilon > 0$ there exists an integer N > 0 such that $\delta(\tilde{a}_n, \tilde{a}) < \varepsilon$ for $n \geq N$.

Theorem 2.9. Let $\{\tilde{a}_n\}, \{\tilde{b}_n\} \subset F(\mathbb{R}), \ \tilde{a}, \tilde{b} \in F(\mathbb{R}), \ k \in \mathbb{R}$. If $\lim_{n \to \infty} \tilde{a}_n = \tilde{a}$ and $\lim_{n\to\infty}\tilde{b}_n=\tilde{b}, \text{ then }$

- (1) $\lim_{n\to\infty} (\tilde{a}_n \pm \tilde{b}_n) = \tilde{a} \pm \tilde{b}$ (the same order of sign), (2) $\lim_{n\to\infty} (k\tilde{a}_n) = k\tilde{a}$.

Theorem 2.10. Let $\lim_{n\to\infty} \tilde{a}_n = \tilde{a}$, $\lim_{n\to\infty} \tilde{b}_n = \tilde{b}$. Then

$$\lim_{n\to\infty}\delta(\tilde{a}_n,\tilde{b}_n)=\delta(\tilde{a},\tilde{b}).$$

Definition 2.11. A sequence $\{\tilde{a}_n\}$ of $F(\mathbb{R})$ is said to be a Cauchy sequence if for every $\varepsilon > 0$ there exists an integer N > 0 such that $\delta(\tilde{a}_n, \tilde{a}_m) < \varepsilon$ for n, m > N.

If a metric space has the property that every Cauchy sequence converges, the space is called a complete metric space.

Theorem 2.12. The metric space $(F(\mathbb{R}), \delta)$ is complete.

3. Main theorem

In this section, we prove that the metric space $(F(\mathbb{R}), \delta)$ has a completion $(\hat{F}(\mathbb{R}), \hat{\delta})$.

Definition 3.1. [2] Let $X_1 = (X_1, d_1), X_2 = (X_2, d_2)$ be metric spaces. Then,

- (a) A mapping f of X_1 into X_2 is said to be isometric or an isometry if f preserves distances, that is, if for all $x, y \in X_1$, $d_2(f(x), f(y)) = d_1(x, y)$, where f(x) and f(y) are the images of x and y respectively.
- (b) The space X_1 is said to be isometric with the space X_2 if there exists a bijective isometry of X_1 onto X_2 . The spaces X_1 and X_2 are then called isometric spaces.

Definition 3.2. [2] The complete metric space (X_1^*, d_1^*) is said to be a completion of the given metric space (X_1, d_1) if

- (1) (X_1, d_1) is isometric with a subspace (X_1, d_1^*) of (X_1^*, d_1^*) ,
- (2) X is dense in X_1^* , i.e., the closure of X, $\overline{X} = X_1^*$.

MAIN Theorem. The metric space $(F(\mathbb{R}), \delta)$ has a completion $(\hat{F}(\mathbb{R}), \hat{\delta})$ which has a subspace X that is isometric with $F(\mathbb{R})$ and is dense in $\hat{F}(\mathbb{R})$. This space $(\hat{F}(\mathbb{R}), \hat{\delta})$ is unique except for isometries, that is, if $(\check{F}(\mathbb{R}), \check{\delta})$ is another completion having a dense subspace Y isometric with $F(\mathbb{R})$, then $\hat{F}(\mathbb{R})$ and $\check{F}(\mathbb{R})$ are isometric.

Proof. The proof is somewhat lengthy. We divide it into four steps (a) to (d). We construct:

- (a) $\hat{F}(\mathbb{R}) = (\hat{F}(\mathbb{R}), \hat{\delta}),$
- (b) an isometry f of $F(\mathbb{R})$ onto X, where $\overline{X} = \hat{F}(\mathbb{R})$.

Then we prove:

- (c) completeness of $\hat{F}(\mathbb{R})$,
- (d) uniqueness of $\hat{F}(\mathbb{R})$ except for isometries.
- (a). Construction of $\hat{F}(\mathbb{R}) = (\hat{F}(\mathbb{R}), \hat{\delta})$.

Let $\{\tilde{x}_n\}$ and $\{\tilde{x}'_n\}$ be Cauchy sequences in $F(\mathbb{R})$. Define $\{\tilde{x}_n\}$ to be equivalent to $\{\tilde{x}'_n\}$ written $\{\tilde{x}_n\} \sim \{\tilde{x}'_n\}$, if

$$\lim_{n \to \infty} \delta(\tilde{x}_n, \, \tilde{x}'_n) = 0. \tag{1}$$

Let $\hat{F}(\mathbb{R})$ be the set of all equivalence classes \hat{x} , \hat{y} , \cdots of Cauchy sequences thus obtained. We write $\{\tilde{x}_n\} \in \hat{x}$ to mean that $\{\tilde{x}_n\}$ is a member of \hat{x} (a representative of the class \hat{x}). We now set

$$\hat{\delta}(\hat{x},\,\hat{y}) = \lim_{n \to \infty} \delta(\tilde{x}_n,\,\tilde{y}_n) \tag{2}$$

where $\{\tilde{x}_n\} \in \hat{x}$ and $\{\tilde{y}_n\} \in \hat{y}$. We show that this limit exists. We have

$$\delta(\tilde{x}_n, \, \tilde{y}_n) \leq \delta(\tilde{x}_n, \, \tilde{x}_m) + \delta(\tilde{x}_m, \, \tilde{y}_m) + \delta(\tilde{y}_m, \, \tilde{y}_n),$$

hence we obtain

$$\delta(\tilde{x}_n, \, \tilde{y}_n) - \delta(\tilde{x}_m, \, \tilde{y}_m) \le \delta(\tilde{x}_n, \, \tilde{x}_m) + \delta(\tilde{y}_m, \, \tilde{y}_n)$$

and a similar inequality with m and n interchanged. Together,

$$|\delta(\tilde{x}_n, \, \tilde{y}_n) - \delta(\tilde{x}_m, \, \tilde{y}_m)| \le \delta(\tilde{x}_n, \, \tilde{x}_m) + \delta(\tilde{y}_m, \, \tilde{y}_n). \tag{3}$$

Since $\{\tilde{x}_n\}$ and $\{\tilde{y}_n\}$ are Cauchy, we can make the right side as small as we please. This implies that the limit in (2) exists because $(F(\mathbb{R}), \delta)$ is complete.

We must also show that the limit in (2) is independent of the particular choice of representatives. In fact, if $\{\tilde{x}_n\} \sim \{\tilde{x}'_n\}$ and $\{\tilde{y}_n\} \sim \{\tilde{y}'_n\}$, then by (1), (3),

$$|\delta(\tilde{x}_n,\,\tilde{y}_n) - \delta(\tilde{x}_n',\,\tilde{y}_n')| \le \delta(\tilde{x}_n,\,\tilde{x}_n') + \delta(\tilde{y}_n,\,\tilde{y}_n') \to 0$$

as $n \to \infty$, which implies the assertion

$$\lim_{n\to\infty} \delta(\tilde{x}_n, \, \tilde{y}_n) = \lim_{n\to\infty} \delta(\tilde{x}'_n, \, \tilde{y}'_n).$$

We prove that $\hat{\delta}$ in (2) is a metric on $\hat{F}(\mathbb{R})$. Obviously, $\hat{\delta}$ satisfies $\hat{\delta}(\hat{x}, \hat{y}) \geq 0$ (see Definition of $\delta(\tilde{x}, \tilde{y})$) as well as $\hat{\delta}(\hat{x}, \hat{x}) = 0$ and $\hat{\delta}(\hat{x}, \hat{y}) = \hat{\delta}(\hat{y}, \hat{x})$. Furthermore,

$$\hat{\delta}(\hat{x}, \hat{y}) = 0 \quad \Rightarrow \quad \{\tilde{x}_n\} \sim \{\tilde{y}_n\} \quad \Rightarrow \quad \hat{x} = \hat{y}$$

gives $\hat{\delta}(\hat{x}, \hat{y}) = 0 \Leftrightarrow \hat{x} = \hat{y}$, and the triangle inequality for $\hat{\delta}$ follows from

$$\delta(\tilde{x}_n, \tilde{y}_n) \leq \delta(\tilde{x}_n, \tilde{z}_n) + \delta(\tilde{z}_n, \tilde{y}_n)$$

by letting $n \to \infty$.

(b). Construction of an isometry $f: F(\mathbb{R}) \to X \subset \hat{F}(\mathbb{R})$.

With each $\tilde{a} \in F(\mathbb{R})$ we associate the class $\hat{a} \in \hat{F}(\mathbb{R})$ which contains the constant Cauchy sequence $\{\tilde{a}, \tilde{a}, \dots\}$. This defines a mapping $f : F(\mathbb{R}) \to X$ onto the subspace $X = f(F(\mathbb{R})) \subset \hat{F}(\mathbb{R})$. The mapping f is given by $\tilde{a} \mapsto \hat{a} = f(\tilde{a})$, where $\{\tilde{a}, \tilde{a}, \dots\} \in \hat{a}$. We see that f is an isometry since (2) becomes simply

$$\hat{\delta}(\hat{x},\,\hat{y}) = \delta(\tilde{a},\,\tilde{b}),$$

here \hat{b} is the class of $\{\tilde{y}_n\}$ where $\tilde{y}_n = \tilde{b}$ for all n. Any isomerty is injective, and $f: F(\mathbb{R}) \to X$ is surjective since $f(F(\mathbb{R})) = X$. Hence X and $F(\mathbb{R})$ are isometric.

We show that X is dense in $\hat{F}(\mathbb{R})$. We consider any $\hat{x} \in \hat{F}(\mathbb{R})$. Let $\{\tilde{x}_n\} \in \hat{x}$. For every $\varepsilon > 0$ there is an integer N > 0 such that

$$\delta(\tilde{x}_n, \, \tilde{x}_N) < \varepsilon/2 \text{ for } n > N.$$

Let $\{\tilde{x}_N, \tilde{x}_N, \dots\} \in \hat{x}_N$. Then $\hat{x}_N \in X$. By (2),

$$\hat{\delta}(\hat{x}, \, \hat{x}_N) = \lim_{n \to \infty} \delta(\tilde{x}_n, \, \tilde{x}_N) \le \varepsilon/2 < \varepsilon.$$

This shows that every ε -neighborhood of the arbitrary $\hat{x} \in \hat{F}(\mathbb{R})$ cotains an element of X. Hence X is dense in $\hat{F}(\mathbb{R})$.

(c). Completeness of $\hat{F}(\mathbb{R})$.

Let $\{\hat{x}_n\}$ be any Cauchy sequence in $\hat{F}(\mathbb{R})$. Since X is dense in $\hat{F}(\mathbb{R})$, for every $\hat{x}_n \in \hat{F}(\mathbb{R})$ there is a $\hat{z}_n \in X$ such that

$$\hat{\delta}(\hat{x}_n, \, \hat{z}_n) < \frac{1}{n}.\tag{4}$$

Hence, by the triangle inequality,

$$\hat{\delta}(\hat{z}_{m}, \, \hat{z}_{n}) \leq \hat{\delta}(\hat{z}_{m}, \, \hat{x}_{m}) + \hat{\delta}(\hat{x}_{m}, \, \hat{x}_{n}) + \hat{\delta}(\hat{x}_{n}, \, \hat{z}_{n}) \\
< \frac{1}{m} + \hat{\delta}(\hat{x}_{m}, \, \hat{x}_{n}) + \frac{1}{n}$$

and this is less than any given $\varepsilon > 0$ for sufficiently large m and n because $\{\hat{x}_n\}$ is Cauchy. Hence $\{\hat{z}_m\}$ is Cauchy. Since $f: F(\mathbb{R}) \to X$ is isometric and $\hat{z}_m \in X$, the sequence $\{\tilde{z}_m\}$, where $\tilde{z}_m = f^{-1}(\hat{z}_m)$, is Cauchy in $F(\mathbb{R})$. Let $\hat{x} \in \hat{F}(\mathbb{R})$ be the class to which $\{\tilde{z}_m\}$ belongs. We show that \hat{x} is the limit of $\{\hat{x}_n\}$. By (4),

$$\hat{\delta}(\hat{x}_n, \, \hat{x}) \leq \hat{\delta}(\hat{x}_n, \, \hat{z}_n) + \hat{\delta}(\hat{z}_n, \, \hat{x})$$

$$< \frac{1}{n} + \hat{\delta}(\hat{z}_n, \, \hat{x}). \tag{5}$$

Since $\{\tilde{z}_m\}\in \hat{x}\in \hat{F}(\mathbb{R})$ and $\hat{z}_n\in X$, so that $\{\tilde{z}_n,\tilde{z}_n,\cdots\}\in \hat{z}_n$, the inequality (5) becomes

$$\hat{\delta}(\hat{x}_n, \hat{x}) < \frac{1}{n} + \lim_{m \to \infty} \delta(\tilde{z}_n, \tilde{z}_m)$$

and the right side is smaller than any given $\varepsilon > 0$ for sufficiently large n. Hence the arbitrary Cauchy sequence $\{\hat{x}_n\}$ in $\hat{F}(\mathbb{R})$ has the limit $\hat{x} \in \hat{F}(\mathbb{R})$, and $\hat{F}(\mathbb{R})$ is complete.

(d). Uniqueness of $\hat{F}(\mathbb{R})$ except for isometries.

If $(\check{F}(\mathbb{R}), \check{\delta})$ is another completion with a subspace Y dense in $\check{F}(\mathbb{R})$ and isometric with $F(\mathbb{R})$, then for any $\check{x}, \check{y} \in \check{F}(\mathbb{R})$ we have sequences $\{\check{x}_n\}, \{\check{y}_n\}$ in Y such that $\check{x}_n \to \check{x}$ and $\check{y}_n \to \check{y}$. Hence we have

$$\check{\delta}(\check{x},\,\check{y}) \leq \check{\delta}(\check{x},\,\check{x}_n) + \delta(\tilde{x}_n,\,\tilde{y}_n) + \check{\delta}(\check{y}_n,\,\check{y})$$

for every n, where $\{\tilde{x}_n, \tilde{x}_n, \dots\} \in \tilde{x}_n$ and $\{\tilde{y}_n, \tilde{y}_n, \dots\} \in \tilde{y}_n$. Since it is true for every n, it is true in the limit as n becomes infinite, which yields

$$\check{\delta}(\check{x},\,\check{y})\leq \lim_{n\to\infty}\delta(\tilde{x}_n,\,\tilde{y}_n).$$

But

$$\delta(\tilde{x}_n, \tilde{y}_n) \leq \check{\delta}(\check{x}_n, \check{x}) + \check{\delta}(\check{x}, \check{y}) + \check{\delta}(\check{y}, \check{y}_n)$$

which yields the reverse inequality. Hence

$$\check{\delta}(\check{x},\,\check{y})=\lim_{n\to\infty}\delta(\tilde{x}_n,\,\tilde{y}_n).$$

In a completly analogous manner, we can also show that

$$\hat{\delta}(\hat{x},\,\hat{y}) = \lim_{n \to \infty} \delta(\tilde{x}_n,\,\tilde{y}_n).$$

Consequently,

$$\hat{\delta}(\hat{x},\,\hat{y}) = \check{\delta}(\check{x},\,\check{y}),$$

that is, the distance on $\check{F}(\mathbb{R})$ and $\hat{F}(\mathbb{R})$ must be the same. Hence $\check{F}(\mathbb{R})$ and $\hat{F}(\mathbb{R})$ are isometric. \square

REFERENCES

- 1. H. Choi, On some metrics and sequences of fuzzy numbers, Theses Collection of Kyung Hee University 24, 1995 to appear.
- 2. G. Bachman and L. Narici, Functional Analysis, Academic Press, 1966.
- 3. D. Dubois and H. Prade, Operations on fuzzy numbers, Internat. J. of Systems Sci. 9 (1978), 613-626.
- R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems 18 (1986), 31-42.
- 5. R. Goetschel and W. Voxman, Topological properties of fuzzy numbers, Fuzzy Sets and Systems 10 (1983), 87-99.
- 6. A. Kaufmann and M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications, Van Nostrand Reinhold, New York, 1985.
- 7. A. Kaufmann and M. Gupta, Fuzzy mathematical models in engineering and management science, North-Holland, New York, 1988.
- 8. G. Zhang, Fuzzy limit theory of fuzzy numbers, Cybernetics and Systems, '90 (World Sci. Pub., 1990), 163-170.
- 9. G. Zhang, Fuzzy continuous functions and its properties, Fuzzy Sets and Systems 43 (1991), 159-171.

Kyung Hee University Kyungki, 449-701 Korea