• 제목/요약/키워드: number of somatic cell

검색결과 140건 처리시간 0.024초

인태아 척수 외측운동주의 발육에 관한 전자현미경적 연구 (Electron Microscopic Study on the Development of the Lateral Motor Column in the Spinal Cord of the Human Fetus)

  • 윤재룡;최태엽;남광일
    • Applied Microscopy
    • /
    • 제26권3호
    • /
    • pp.329-348
    • /
    • 1996
  • The prenatal development of lateral motor columns in the lumbar spinal cord was studied by electron microscopy in human embryos and fetuses ranging from 9 mm to 260 mm crown-rump length ($5{\sim}30$ weeks of gestational age). At 9 mm embryo, the lateral motor column were developed from ventro-lateral projection into the marginal layer and composed of primitive neuroblasts. At 20 mm embryo the primitive motor neurons were packed closely together and could readly be distinguished from primitive glioblasts by a presence of large nuclei. The primitive multipolar neurons were observed in lateral motor column at 40 mm fetus. At 80 mm fetus multipolar neurons were characterized by their many dendrites and axons in the vicinity of motor neuron perikarya. At 260 mm fetus, the motor neurons were large and contained all intracytoplasmic structures in the cytoplasm which were also found in mature motor neuron in lateral motor column. The first axo-dendritic synapses found at 40 mm fetus and increased in number throughout fetal development. Axo-somatic synapses with spherical vesicles were first observed at 80 mm fetus. A few axo-somatic synapses were found at next prenatal stages. Axo-dendritic and axo-somatic synapses contained mixed populations of spherical and flattened vesicles by 120 mm fetus. These findings indicate that axo-dendritic synapses develop prior to axo-somatic synapses in the spinal cord during neurogenesis.

  • PDF

Mitochondrial DNA Heteroplasmy in Cloned Bovine Embryos following Somatic Cell Nuclear Transfer

  • Do, Jeong-Tae;Lee, Bo-Yon;Kim, Seung-Bo;Lee, Hoon-Taek;Chung, Kil-Saeng
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.40-40
    • /
    • 2002
  • Nuclear transfer (NT) has the potential to produce large number of identical progeny and would greatly benefit ongoing research efforts, Cloned animals produced by NT, however, may not be genetically identical to the donor cell. In NT procedures, nucleus genes originate from donor cell, and mitochondrial genes originate from recipient oocytes. (omitted)

  • PDF

징거미새우, Macrobrachium nipponense 정소 구성세포의 미세구조와 기능 (Ultrastructure and Role of Somatic Cells in Macrobrachium nipponense Testis)

  • 김대현;강정하;한창희
    • 한국수산과학회지
    • /
    • 제33권5호
    • /
    • pp.403-407
    • /
    • 2000
  • 징거미새우의 정소는 간췌장의 배면 측상부에서 심장사이에 위치하며, 한 쌍의 소엽으로 이루어져 있고 각 소엽의 선단은 서로 연결되어 있다. 그리고 각 소엽은 수많은 세정관이 결합조직으로 연결되어 있다. 각 세정관은 생식세포와 지주세포가 밀착되어 있는 생식세포대를 제외한 부분은 낮은 입방상피에 의해 내강이 형성되어 있고, 세정관의 제일 바깥은 단층편평상피로 둘러싸여 있다. 세정관 사이에는 결합조직 외에 Leydig cell-like cell도 관찰된다. 단층편평상피세포는 얇은 측면으로 연결되어 있고 종종 이웃한 세포와 포개져 있다. 지주세포는 생식세포에 비해 그 수가 현저히 적고, 대부분 생식세포대의 가장자리에 위치하고 있다. 지주세포의 세포질은 기저판과 접해 있어 기저면과 생식세포 사이는 지주세포의 원형질에 의해 분리되어 있다. 지주세포의 핵은 대부분 각져 있고, 크고 현저한 인이 핵의 중심부에 위치하고 있다. 낮은 입방상피세포는 세정관의 기저판과 접하고 있는 기저면과 일부는 생식세포대와 내강 사이에 위치하고 있다. 입방상피세포의 세포질에서는 횡 방향의 크리스테가 발달된 미토콘드리아, 층상구조의 조면소포체 그리고 Golgi 복합체들이 매우 발달되어 있다. 그리고 조면소포체와 Golgi 복합체의 볼록한 형성면 사이에는 전이소낭이, Golgi 복합체의 성숙면에서는 분비소낭이 관찰되며, 상피세포의 선단에 수많은 홈들이 존재하는 점으로 보아 exocytosis에 의해 내강으로의 물질 분비가 이루어지는 것으로 판단된다.

  • PDF

Siberian Sturgeon Oocyte Extract Induces Epigenetic Modifications of Porcine Somatic Cells and Improves Developmental Competence of SCNT Embryos

  • Kim, So-Young;Kim, Tae-Suk;Park, Sang-Hoon;Lee, Mi-Ran;Eun, Hye-Ju;Baek, Sang-Ki;Ko, Yeoung-Gyu;Kim, Sung-Woo;Seong, Hwan-Hoo;Campbell, Keith H.S.;Lee, Joon-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권2호
    • /
    • pp.266-277
    • /
    • 2014
  • Somatic cell nuclear transfer (SCNT) has generally demonstrated that a differentiated cell can convert into a undifferentiated or pluripotent state. In the SCNT experiment, nuclear reprogramming is induced by exposure of introduced donor nuclei to the recipient cytoplasm of matured oocytes. However, because the efficiency of SCNT still remains low, a combination of SCNT technique with the ex-ovo method may improve the normal development of SCNT embryos. Here we hypothesized that treatment of somatic cells with extracts prepared from the germinal vesicle (GV) stage Siberian sturgeon oocytes prior to their use as nuclear donor for SCNT would improve in vitro development. A reversible permeability protocol with $4{\mu}g/mL$ of digitonin for 2 min at $4^{\circ}C$ in order to deliver Siberian sturgeon oocyte extract (SOE) to porcine fetal fibroblasts (PFFs) was carried out. As results, the intensity of H3K9ac staining in PFFs following treatment of SOE for 7 h at $18^{\circ}C$ was significantly increased but the intensity of H3K9me3 staining in PFFs was significantly decreased as compared with the control (p<0.05). Additionally, the level of histone acetylation in SCNT embryos at the zygote stage was significantly increased when reconstructed using SOE-treated cells (p<0.05), similar to that of IVF embryos at the zygote stage. The number of apoptotic cells was significantly decreased and pluripotency markers (Nanog, Oct4 and Sox2) were highly expressed in the blastocyst stage of SCNT embryos reconstructed using SOE-treated cells as nuclear donor (p<0.05). And there was observed a better development to the blastocyst stage in the SOE-treated group (p<0.05). Our results suggested that pre-treatment of cells with SOE could improve epigenetic reprogramming and the quality of porcine SCNT embryos.

Effect of EGF on In Vitro Oocyte Maturation and Embryo Development and Expression of EGF mRNA in Bovine Oocytes and Embryo I. Influence of Cumulus Expression and Maturation and Embryo Development during Bovine Oocyte Maturation In vitro by Addition EGF

  • Kim, Kwang-Sig;Kim, Chang-Keun;Chung, Yung-Chai;Hwang, Seong-Soo;Park, Jin-Ki;Chang, Won-Kyong
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 춘계학술발표대회
    • /
    • pp.28-28
    • /
    • 2001
  • The objective of this study was to the effect on subsequent development of EGF present in defined medium during bovine 1)oocyte maturation or 2)embryo culture. The presence of EGF during IVM, irrespective of concentration(1, 10, 100ng/$m\ell$), stimulated cumulus expansion and significantly increased the proportion of oocytes attaining metaphaseII, the rate of cleavage, and develop to blastocyst. 1. In the group of EGF-added medium(1, 10, 100ng/$m\ell$), nuclear maturation rate for in vitro maturation was 91% to 92% but was not significantly higher than control group(87%). 2. For in vitro maturation, in the group of EGF-added medium(1, 10, 100ng/$m\ell$)the rate of cumulus cell expansion degree 2 ranged from 81% to 87%, which was significantly higher than the control group(medium with EGF not added). The rate of in vitro fertilization, developing to 2-to 4- cell stage, was 76% to 80%, which was also significantly higher(p<0.05)than control group(62%). 3. For in vitro maturation, in the group of EGF added in medium(1, 10, 100ng/$m\ell$)the development rate to blastocyst was 24.3% to 27%, which was significantly higher than control group(13.7%). The total cleavage rate in the group of EGF-added medium was 77% to 82%, which was higher than control group. 4. The development rate to blastocyst for 6 days of cultivation and the hatching blastocyst were 30.6% and 59.1%, respectively, in the group of 100ng/$m\ell$ of EGF, which were significantly higher(p<0.05)than control group(14.0% and 24%, respectively), The numbers of cells in blastocyst were 140.2 and 148, respectively, in 10ng/$m\ell$ and 100ng/$m\ell$ of EGF-added medium, which were higher than 108.5 in control group. 5. The development rate of in vitro fertilized embryos to blastocyst in 10ng/$m\ell$ of EGF-added medium co-cultured with somatic cell was 28%, which was significantly higher(p<0.05)than control group(11.8%). The numbers of cells in blastocyst were 141.6 for EGF-added medium and 145 for EGF+co-culture group, which were higher than control(101.6)and medium co-cultured with somatic cells(110.6). These results showed that in vitro maturation and fertilization, EGF was found a significant effect of increase of development rate to blastocyst and cell number.

  • PDF

세포 노화에 있어서 복제 세네센스 현상과 산화적 스트레스의 영향 (Replicative Senescence in Cellular Aging and Oxidative Stress)

  • 박영철
    • Toxicological Research
    • /
    • 제19권3호
    • /
    • pp.161-172
    • /
    • 2003
  • Explanted mammalian cells perform a limited number of cell division in vitro and than are arrested in a state known as replicative senescence. Such cells are irreversibly blocked, mostly in the G1 phase of cell cycle, and are no longer sensitive to growth factor stimulation. Thus replicative senescence is defined as a permanent and irreversible loss of replicative potential of cells. For this characteristic, replicative senescence seems to evolve to protect mammalian organism from cancer. However, senescence also contributes to aging. It seems to decrease with age of the cell donor and, as a form of cell senescence, is thought to underlie the aging process. Extensive evidence supports the idea that progressive telomere loss contributes to the phenomenon of cell senescence. Telomeres are repetitive structures of the sequence (TTAGGG)n at the ends of linear chromosomes. It has been shown that the average length of telomere repeats in human somatic cells decreases by 30∼200 bp with each cell division. It is generally believed that when telomeres reach a critical length, a signal is activated to initiate the senescent program. This has given rise to the hypothesis that telomeres act as mitotic clocks to regulate lifespan. One proposes that cumulative oxidative stress, mainly reactive oxygen species generated from mitochondria, may mainly cause telomere shortening, accelerating aging. Here, the biological importance and mechanism of replicative senescence were briefly reviewed. Also it was summarized that how oxidative stress affects replicative senescence and telomere shortening.

Production of transgenic cattle by somatic cell nuclear transfer (SCNT) with the human granulocyte colony-stimulation factor (hG-CSF)

  • Carvalho, Bruno P.;Cunha, Andrielle T.M.;Silva, Bianca D.M.;Sousa, Regivaldo V.;Leme, Ligiane O.;Dode, Margot A.N.;Melo, Eduardo O.
    • Journal of Animal Science and Technology
    • /
    • 제61권2호
    • /
    • pp.61-68
    • /
    • 2019
  • The hG-CSF (human Granulocyte Colony-Stimulating Factor) is a growth and stimulation factor capable of inducing the proliferation of bone marrow cells, several types of leukocytes, among other hematopoietic tissue cells. hG-CSF is used in used to treat anomalies that reder a small number of circulating white blood cells, which may compromise the immune defenses of the affected person. For these reasons, the production of hG-CSF in a bioreactor system using the mammary gland of genetic modified animals is a possibility of adding value to the bovine genetic material and reducing the costs of hG-CSF production in pharmaceutical industry. In this study, we aimed the production of transgenic hG-CSF bovine through the lipofection of bovine primary fibroblasts with an hG-CSF expression cassette and cloning these fibroblasts by the somatic cell nuclear transfer (SCNT) technique. The bovine fibroblasts transfected with the hG-CSF cassette presented a stable insertion of this construct into their genome and were efficiently synchronized to G0/G1 cell cycle stage. The transgenic fibroblasts were cloned by SCNT and produced 103 transferred embryos and 2 pregnancies, one of which reached 7 months of gestation.

Aberrant Distributions of ICM Cells in Bovine Blastocysts Produced by Somatic Cell Nuclear Transfer

  • D. B. Koo;Y. K. Kang;Park, Y. H.;Park, J. S.;Kim, H. N.;D. S. Son;Y. M. Han;Lee, K. K.
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 춘계학술발표대회
    • /
    • pp.20-20
    • /
    • 2001
  • It has been reported that cloning cattle is inefficient. One of the problems was placental abnormality, finally resulting in fetal mortality after transfer of nuclear transfer (NT) bovine embryos. This study was focused on the allocations of embryonic cells to the inner cell mass (ICM) or to the trophectoderm(TE) in NT bovine blastocysts. Somatic cells were derived from a Day 45 fetus of gestation, individually transferred into enucleated oocytes and developed to the blastocyst stage in vitro. Differential staining was used to assess the qualify of blastocysts derived from NT, IVF and in vivo. Development rate of NT embryos to blastocysts (25.0%, 41/164) was similar to that of IVF embryos (28.7%, 49/171). The total cell number of NT blastocysts (101.3$\pm$45.9) was not different compared with that of IVF embryos (107.9$\pm$34.2, P>0.05), but was lower than in vivo embryos (122.5$\pm$21.6, P<0.05). Ratio of ICM/total cells was higher in NT embryos (51.6$\pm$ 18.6%) than in IVF and in vivo embryos (42.3$\pm$ 15.3% and 34.9$\pm$8.9%, respectively) (P<0.05). Most IVF (56.8%, 25/44) and in vivo blastocysts(80.8%, 21/26) was distributed in the proportion of ICM/total cells ranging from 20 to 40% group. However, most NT blastocysts was biased in the 40-60%(34.1%, 15/44) and >60% (31.8%, 14/44) groups. Our findings suggest that placental abnormalities or early fetal losses in the present cloning system may be due to aberrant allocation of NT embryos to the ICM cells.

  • PDF

Effect of Glycine and Various Osmolarities of Culture Medium on In Vitro Development of Parthenogenesis and Somatic Cell Nuclear Transfer Embryos in Pigs

  • Lee, Joohyeong;Lee, Yongjin;Jung, Hae Hong;Lee, Seung Tae;Lee, Geun-Shik;Lee, Eunsong
    • 한국수정란이식학회지
    • /
    • 제33권4호
    • /
    • pp.221-228
    • /
    • 2018
  • The osmolarity of a medium that is commonly used for in vitro culture (IVC) of oocytes and embryos is lower than that of oviductal fluid in pigs. In vivo oocytes and embryos can resist high osmolarities to some extent due to the presence of organic osmolytes such as glycine and alanine. These amino acids act as a protective shield to maintain the shape and viability in high osmotic environments. The aim of this study was to determine the effects of glycine or/and alanine in medium with two different osmolarities (280 and 320 mOsm) during IVC on embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) in pigs. To this end, IVC was divided into two stages; the 0-2 and 3-7 days of IVC. In each stage, embryos were cultured in medium with 280, 320, or 360 mOsm and their combinations with or without glycine or/and alanine according to the experimental design. Treatment groups were termed as, for example, "T(osmolarity of a medium used in 0-2 days of IVC)-(osmolarity of a medium used in 3-7 days of IVC)" T280-280 was served as control. When PA embryos were cultured in medium with various osmolarities, T320-280 showed a significantly higher blastocyst formation (29.0%) than control (22.2%) and T360-360 groups (6.9%). Glycine treatment in T320-280 significantly increased blastocyst formation (50.4%) compared to T320-280 only (36.5%) while no synergistic was observed after treatment with glycine and alanine together in T320-280 (45.7%). In contrast to PA embryonic development, the stimulating effect by the culture in T320-280 was not observed in SCNT blastocyst development (27.6% and 23.7% in T280-280 and T320-280, respectively) whereas the number of inner cell mass cells was significantly increased in T320-280 (6.1 cells vs. 9.6 cells). Glycine treatment significantly improved blastocyst formation of SCNT embryos in both T280-280 (27.6% vs. 38.0%) and T320-280 (23.7% vs. 35.3%). Our results demonstrate that IVC in T320-280 and treatment with glycine improves blastocyst formation of PA and SCNT embryos in pigs.

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.20-20
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF