• Title/Summary/Keyword: number average particle size

Search Result 87, Processing Time 0.027 seconds

The Effect of Milling Conditions for Dissolution Efficiency of Valuable Metals from PDP Waste Panels (밀링조건이 사용 후 PDP패널의 유가금속 용출효율에 미치는 영향)

  • Kim, Hyo-Seob;Kim, Chan-Mi;Lee, Chul-Hee;Lee, Sung-Kyu;Hong, Hyun-Seon;Koo, Jar-Myung;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • In this study, the microstructure and valuable metals dissolution properties of PDP waste panel powders were investigated as a function of milling parameters such as ball diameter size, milling time, and rotational speed during high-energy milling process. The complete refinement of powder could achieved at the ball diameter size of 5 mm due to sufficient impact energy and the number of collisions. With increasing milling time, the average particle size was rapidly decreased until the first 30 seconds, then decreased gradually about $3{\mu}m$ at 3 minutes and finally, increased with presence of agglomerated particles of $35{\mu}m$ at 5 minutes. Although there was no significant difference on the size of the particle according to the rotational speed from 900 to 1,100 rpm, the total valuable metals dissolution amount was most excellent at 1,100 rpm. As a result, the best milling conditions for maximum dissolving amount of valuable metals (Mg: 375 ppm, Ag 135 ppm, In: 17 ppm) in this research were achieved with 5 mm of ball diameter size, 3min of milling time, and 1,100 rpm of rotational speed.

Monitoring of the Fugitive and Suspended Dust Dispersion at the Saemangeum Reclaimed Land and Neighboring Farm areas (새만금 지역 간척지 및 인근 농경지에서의 비산 및 부유먼지의 지역별, 시기별 모니터링)

  • Hwang, H.S.;Lee, I.B.;Shin, M.H.;Lee, G.Y.;Hong, S.W.;Seo, I.H.;Yoo, J.I.;Bitog, J.P.;Kwon, K.W.;Kim, Y.H.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.9-17
    • /
    • 2009
  • A study on fugitive dusts was conducted at Saemangeum reclaimed land and the neighboring farm located at the west coast of Korea. After the area was completely reclaimed in 2006, halophyte plants and several windbreak systems were installed. The distributions of suspended dust particle was regularly measured through field experiment. The size of dust source area was also analyzed periodically and then it was determined to be in the following order: Buan > Gimje > Gunsan. The suspended dust which were dispersed to the neighboring areas were significantly affected by the size of the soil particles, wind velocity and wind direction. The results of Big Spring Number Eight (BSNE) experiments also showed that the concentration of the fugitive dust generated from the reclaimed land was reduced remarkably by the presence of halophyte plants. Recently, in 2008, the measured dust concentration rate was decreased by an average of 30.6%. The average dust concentration is expected to decrease further as more areas are being covered by halophyte plants.

Characteristics of Particulate Matter Generated during the Operation of a Small Directly Fired Coffee Roaster (소형 직화식 커피 로스터 이용 시 발생하는 미세먼지 특성 연구)

  • Yu, Da Eun;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.236-248
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate the concentrations of particulate matter generated during coffee roasting and to study various factors affecting the concentrations. Methods: Differences in concentration levels were investigated based on various factors to understand the emission rates of particulate matter over time and to compare the mass and number concentrations according to their size. Sampling was performed in closed laboratories without the operation of air conditioning or ventilation. Optical Particle Sizer(OPS) was used as a measuring device. An OPS measures using a light-scattering method. Sampling was performed for sixty minutes at one-minute intervals. The background concentration was measured for about 30 minutes before starting of coffee roasting. The concentrations of particulate matter generated during coffee roasting were monitored until roasted coffee beans were removed from the roaster and cooled down. Several factors affecting the concentrations of particulate matter were investigated, which includes the origins of green beans, the roasting level, and the input amount of green beans. Results: The results of this study may be summarized as follows: 1) There was no difference in particulate matter concentration levels by the origin of the green beans, but a statistically significant difference in concentration levels by roasting level and the input amount of green beans; The higher the roasting level, the higher was the particulate matter concentration. The more green beans we put in the roaster, the higher were the concentrations; 2) The PM10 mass concentrations increased over time. The average concentration after roasting was higher than the average concentration during roasting; 3) In the distribution of mass and number concentration by particle diameter, the majority of particles was below 2.5 ㎛. Conclusions: Persons who work in roastery cafes can be exposed to high concentrations of particulate matter. Therefore, personal exposure and risk assessment should be conducted for roastery cafe workers.

Error Analysis of Image Velocimetry According to the Variation of the Interrogation Area (상관영역 크기 변화에 따른 영상유속계의 오차 분석)

  • Kim, Seojun;Yu, Kwonkyu;Yoon, Byungman
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.821-831
    • /
    • 2013
  • Recently image velocimetries, including particle image velocimetry (PIV) and surface image velocimetry (SIV), are often used to measure flow velocities in laboratories and rivers. The most difficult point in using image velocimetries may be how to determine the sizes of the interrogation areas and the measurement uncertainties. Especially, it is a little hard for unskilled users to use these instruments, since any standardized measuring techniques or measurement uncertainties are not well evaluated. Sometimes the user's skill and understanding on the instruments may make a wide gap between velocity measurement results. The present study aims to evaluate image velocimetry's uncertainties due to the changes in the sizes of interrogation areas and searching areas with the error analyses. For the purpose, we generated 12 series of artificial images with known velocity fields and various numbers and sizes of particles. The analysis results showed that the accuracy of velocity measurements of the image velocimetry was significantly affected by the change of the size of interrogation area. Generally speaking, the error was reduced as the size of interrogation areas became small. For the same sizes of interrogation areas, the larger particle sizes and the larger number of particles resulted smaller errors. Especially, the errors of the image velocimetries were more affected by the number of particles rather than the sizes of them. As the sizes of interrogation areas were increased, the differences between the maximum and the minimum errors seemed to be reduced. For the size of the interrogation area whose average errors were less than 5%, the differences between the maximum and the minimum errors seemed a little large. For the case, in other words, the uncertainty of the velocity measurements of the image velocimetry was large. In the viewpoint of the particle density, the size of the interrogation area was small for large particle density cases. For the cases of large number of particle and small particle density, however, the minimum size of interrogation area became smaller.

Evaluation of the effect of aggregate on concrete permeability using grey correlation analysis and ANN

  • Kong, Lijuan;Chen, Xiaoyu;Du, Yuanbo
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.613-628
    • /
    • 2016
  • In this study, the influence of coarse aggregate size and type on chloride penetration of concrete was investigated, and the grey correlation analysis was applied to find the key influencing factor. Furthermore, the proposed 6-10-1 artificial neural network (ANN) model was constructed, and performed under the MATLAB program. Training, testing and validation of the model stages were performed using 81 experiment data sets. The results show that the aggregate type has less effect on the concrete permeability, compared with the size effect. For concrete with a lower w/b, the coarse aggregate with a larger particle size should be chose, however, for concrete with a higher w/c, the aggregate with a grading of 5-20 mm is preferred, too large or too small aggregates are adverse to concrete chloride diffusivity. A new idea for the optimum selection of aggregate to prepare concrete with a low penetration is provided. Moreover, the ANN model predicted values are compared with actual test results, and the average relative error of prediction is found to be 5.62%. ANN procedure provides guidelines to select appropriate coarse aggregate for required chloride penetration of concrete and will reduce number of trial and error, save cost and time.

Metallorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticles

  • Jung, Oh-Jin;Kim, Sam-Hyeok;Cheong, Kyung-Hoon;Li, W.;Saha, S. Ismat
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • TiO₂nanoparticles were synthesized using the metallorganic chemical vapor deposition process. Particles with and without metal ion dopants were obtained. X-ray photoelectron and energy dispersive X-ray spectroscopic measurements confirmed the stoichiometry of the TiO₂nanoparticles. X-ray diffraction patterns showed a polycrystalline anatase structure of TiO₂. Transmission electron microscopy revealed that these particles are of nanoscale dimensions. Exact particle size and size distribution analyses were carried out by dynamic light scattering. The average particle size was determined to be 22 nm. The nanosize particles provided large surface area for photocatalysis and a large number of free surface-charge carriers, which are crucial for the enhancement of photocatalytic activity. To improve the photocatalytic activity, metal ions, including transition metal ions $(Pd^{2+},\;Pt^{4+},\;Fe^{3+})$ and lanthanide ion $(Nd^{3+})$ were added to pure TiO₂nanoparticles. The effects of dopants on photocatalytic kinetics were investigated by the degradation of 2-chlorophenol under an ultraviolet light source. The results showed that the TiO₂nanoparticles with the metal ion dopants have higher photocatalytic activity than undoped TiO₂. The $Nd^{3+}$ ion of these dopant metal ions showed the highest catalytic activity. The difference in the photocatalytic activity with different dopants is related to the different ionic radii of the dopants.

The Status of 3D Printing Industry and Researches on Exposure to Hazards When Using Metal Materials (3D프린팅 산업 및 금속소재 사용시 유해인자 노출 연구 현황)

  • Hae Dong Park;Leejun HUH
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2023
  • We attempted to provide an overview of the laws and current state of the 3D printing industry in South Korea and around the world, using the annual industry surveys and the Wohler report. Additionally, we reviewed articles relating to the potential exposure to hazards associated with 3D printing using metal materials. In South Korea, there were 406 3D printing-related businesses, employing 2,365 workers, and the market size was estimated at 455.9 billion won in 2021. Globally, the average growth rate of the 3D printing industry market over the past 10 years was 27.4%, and the market size was estimated at $11.8 billion in 2019. The United States had the highest cumulative installation ratio of industrial 3D printers, followed by China, Japan, Germany, and South Korea. A total of 6,168 patents related to 3D printing were registered in the US between 2010 and 2019. Harmful factors during metal 3D printing was mainly evaluated in the powder bed fusion and direct energy deposition printing types, and there is a case of material extrusion type with metal additive filaments. The number, mass, size distribution, and chemical composition of particles were mainly evaluated. Particle concentration increases during the opening of the chamber or post-processing. However, operating the 3D printer in a ventilated chamber can reduce particle concentration to the background level. In order to have a safe and healthy environment for 3D printing, it is necessary to accumulate and apply knowledge through various studies.

The Improvement of Water Quality by Using Filter-aids in Rapid Sand Filters (급속모래여과 공정에서의 여과보조제에 의한 수질개선효과 연구)

  • 김형선;이규성;백영매;조춘구
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.4
    • /
    • pp.15-24
    • /
    • 2001
  • The objective of this study it to evaluate the microbial safety in rapid sand filters adapted in most drinking water treatment plants. The potential pathogens to cause water quality problems Are presumed to be Giardia and Gryptosporidium. They look like particles in view of their size. It has been reported that if the number of particles (larger than 2 ${\mu}{\textrm}{m}$ in water) is less than 100 per mL and its turbidity is below 0.1 NTU, it is considered as a safe water in terms of pathogens. In order to achieve such a good water quality. filter-aids (chemicals) were added to the inlet-channel of filter and their effectiveness was evaluated on the basis of water quality factors such as turbidity and particle counting. This study was conducted in she three steps of experiment: jar test. pilot plant test and real water treatment plant test (P plant in seoul). The experiment reult of the P water treatment showed that cationic polyamine was the most effective in the removal of particles and turbidity at the does of 0.25 mg/L. The turbidity without filer-aids showed in the range of 0.12 ~0.17 NTU during filtration and 0.14 NTU on the average. However. with addition of polyamine, the turbidity represented below(or less than) 0.1 NTU after 20 min in the start of filtration and kept 0.08 NTU on the average. On the other hand, as for number of particles, while no filter-aids led to the range of 111 ~270 per mL and 190 on the average, addition of polydmine led to 113 per mL on talc average, and kept below100 per mL after 20 min in the start of filtration.

  • PDF

A Study on the Effect of Scale Roughness attached Surface of Heat Exchangers (표면에 부착되는 스케일의 조도가 열교환기 성능에 미치는 영향에 관한 연구)

  • Kim, Min-Soo;Choi, Nag-Jung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.235-242
    • /
    • 2010
  • An experimental investigation has been conducted to clarify roughness effects of geothermal water scale deposited onto a heating surface upon its forced convection heat transfer characteristics. Examined was a circular cylinder, on which particles of silica scale having five different sizes are uniformly distributed. The Reynolds number was varied from 13000 through 50000. Local and mean heat transfer characteristics were measured as functions of particle size and Reynolds number. Subsequently the mean fouling resistance was estimated from those results, and its characteristics are clarified. It was found that the heat transfer of cylinders greatly varies with the fouling of geothermal water scale, especially its scale height. Further, the local and average Nusselt numbers strongly depend upon the cylinder spacing and the Reynolds number.

A CFD STUDY ON THE SOLIDS SUSPENSION IN POLYMERIZATION REACTORS (CFD를 이용한 고분자 반응기내 입자 부유에 관한 연구)

  • Cha Hyo Sook;Song Hyun-Seob;Han Sang Phil
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.31-34
    • /
    • 2005
  • This article has investigated the spatial distribution of the solid particles in polymerization reactors using CFD analysis (FLUENT v. 6.2.1). The suspension of the solids in stirred reactors is affected by a number of parameters including particle diameter, vessel shape, impeller size, impeller speed, and rotating direction of stirrer. The degree of solids suspension in the vessel was quantified with a statistical average value, ${\sigma}^2$. The best stirring conditions were determined based on ${\sigma}^2$, which was found to depend on the vessel bottom shape.

  • PDF