DOI QR코드

DOI QR Code

The Effect of Milling Conditions for Dissolution Efficiency of Valuable Metals from PDP Waste Panels

밀링조건이 사용 후 PDP패널의 유가금속 용출효율에 미치는 영향

  • Kim, Hyo-Seob (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Kim, Chan-Mi (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Lee, Chul-Hee (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Lee, Sung-Kyu (Plant Engineering Center, Institute for Advanced Engineering(IAE)) ;
  • Hong, Hyun-Seon (Plant Engineering Center, Institute for Advanced Engineering(IAE)) ;
  • Koo, Jar-Myung (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University)
  • 김효섭 (공주대학교 신소재공학과) ;
  • 김찬미 (공주대학교 신소재공학과) ;
  • 이철희 (공주대학교 신소재공학과) ;
  • 이성규 (고등기술연구원 플랜트엔지니어링센타) ;
  • 홍현선 (고등기술연구원 플랜트엔지니어링센타) ;
  • 구자명 (공주대학교 신소재공학과) ;
  • 홍순직 (공주대학교 신소재공학과)
  • Received : 2013.02.14
  • Accepted : 2013.04.16
  • Published : 2013.04.28

Abstract

In this study, the microstructure and valuable metals dissolution properties of PDP waste panel powders were investigated as a function of milling parameters such as ball diameter size, milling time, and rotational speed during high-energy milling process. The complete refinement of powder could achieved at the ball diameter size of 5 mm due to sufficient impact energy and the number of collisions. With increasing milling time, the average particle size was rapidly decreased until the first 30 seconds, then decreased gradually about $3{\mu}m$ at 3 minutes and finally, increased with presence of agglomerated particles of $35{\mu}m$ at 5 minutes. Although there was no significant difference on the size of the particle according to the rotational speed from 900 to 1,100 rpm, the total valuable metals dissolution amount was most excellent at 1,100 rpm. As a result, the best milling conditions for maximum dissolving amount of valuable metals (Mg: 375 ppm, Ag 135 ppm, In: 17 ppm) in this research were achieved with 5 mm of ball diameter size, 3min of milling time, and 1,100 rpm of rotational speed.

Keywords

References

  1. S. J. Hwang and H. S. Kim: Ceramist 9 (2006) 75. (Korean)
  2. H. S. Hong, H. M. Lee, M. S. Kong, H. Y. Kang: J. of Kor. Soc. for Geosystem Eng., 47 (2010) 619. (Korean)
  3. H. S. Hong, M. S. Kong, S. K. Lee and H. Y. Kang: KIC News, 13 (1) (2010) 10. (Korean)
  4. H. Takamichi and M. Toshiaki: Sharp Technical Journal, 92 (2005) 17.
  5. J. Chen, J. S. Yao, Y. Y. Zhou, Z. F. Chen, X. Wang and J. W. Huang: Chinese Journal of Rare Metals, 27(1) (2003) 101.
  6. H. M. Lee, H. S. Hong, H. C. Jung, H. Y. Kang and S. J. Hong: J. Kor. Powder. Metall. Inst., 17 (2010) 88. (Korean) https://doi.org/10.4150/KPMI.2010.17.2.088
  7. S. J. Hsieh, C. C. Chen and W. C. Say: Mater. Sci. Eng. B., 158 (2009) 82. https://doi.org/10.1016/j.mseb.2009.01.019
  8. M. Turner and D. Callaghan: Computer Law and Security Report, 23 (2007) 73. https://doi.org/10.1016/j.clsr.2006.11.007
  9. K. Takahashi, A. Sasaki, G. Dodbiba, J. Sadaki, N. Sato and Toyohisa Fujita: Metall. Trans. A, 40 (2009) 891. https://doi.org/10.1007/s11661-009-9786-4
  10. J. Li, S. Gao, H. Duan and L. Liu: Waste Management, 29 (2009) 2033. https://doi.org/10.1016/j.wasman.2008.12.013
  11. K. S. Park, W. Sato, G. Grause, T. Kameda and T. Yoshioka: Thermochimica Acta, 493 (2009) 105. https://doi.org/10.1016/j.tca.2009.03.003
  12. H. S. Kim, J. J. Sung, C. H. Lee, H. S. Hong and S. J. Hong: J. Kor. Powder. Metall. Inst., 18 (2011) 378. (Korean) https://doi.org/10.4150/KPMI.2011.18.4.378
  13. H. H. Hausner and M. K. Mal: Hand book of Powder Metallurgy, second edition, Chemical Publishing, New York, NY, 1982.
  14. Randall M. German: Powder Metallurgy & particulate Materials Processing, Metal Powder Industries Federation, NJ, 2005.
  15. Y. R. Uhm, J. W. Kim, J. W. Jung and C. K. Rhee: J. Kor. Powder. Metall. Inst., 16 (2009) 110. (Korean) https://doi.org/10.4150/KPMI.2009.16.2.110
  16. W. K. Kang, Fikret Yilmaz, H. S. Kim, J. K. Lee J. M. Koo and S.J. Hong: J. Alloys and Compd., 536S (2012) S45.
  17. J. W. Song, H. S. Kim, S. S. Kim, J. M. Koo and S. J. Hong: J. Kor. Powder. Metall. Inst., 17 (2010) 242. (Korean) https://doi.org/10.4150/KPMI.2010.17.3.242
  18. Melgardt M. de Villiers: Int. J. Pharm., 136 (1996) 175. https://doi.org/10.1016/0378-5173(95)04380-2
  19. C. H. Lee, M. K. Jeong, M. F. Kilicaslan, J. H. Lee, H. S. Hong and S. J. Hong: Waste Management, 33 (2013) 730. https://doi.org/10.1016/j.wasman.2012.10.002
  20. R. J. Charles: Trans. AIME, 203 (1957) 80.
  21. M. Gao, and E. Forssberg: Powder Technol., 84 (1995) 101. https://doi.org/10.1016/0032-5910(95)02990-J

Cited by

  1. Comparison Of Mercury Distribution Between The Types Of Spent Fluorescent Lamp vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0117