• Title/Summary/Keyword: nucleotide metabolism

Search Result 111, Processing Time 0.026 seconds

Genetic Composition Analysis of Marine-Origin Euryarchaeota by using a COG Algorithm (COG 알고리즘을 통한 해양성 Euryarchaeota의 유전적 조성 분석)

  • 이재화;이동근;김철민;이은열
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.298-307
    • /
    • 2003
  • To figure out the conserved genes and newly added genes at each phylogenetic level of Archaea, COG (clusters of orthologous groups of proteins) algorithm was applied. The number of conserved genes within 9 species of Archaea was 340 and that of 8 species of Euryarchaeota was 388. Many of conserved 265 COGs, which are specific to Archaea and absent in Bacteria and S. cerevisiae, were concerned with 'information storage and processing' (94 COG, 35.5%) and 'metabolism' (82 COG, 30.9%). COGs related to these functions were assumed as highly conserved and permit peculiar life form to Archaea. It seemed that there was some difference in 'nucleotide transport and metabolism' and there was little difference in 'information storage and processing' between Euryarchaeota and Crenarchaeota. Marine-origin Euryarchaeota showed different conserved COGs with terrestrial Euryarchaeota. Conserved COGs, related to carbohydrate transport and metabolism and others, were different between marine- and terrestrial-origin Euryarchaeota. Hence it was assumed that their physiology might be different. This study may help to understand the origin and conserved genes at each phylogenetic level of marine-origin Euryarchaeota and may help in the mining of useful genes in marine Archaea as Manco et al. (Arch. Biochem. Biophy. 373, 182 (2000)).

Comparing Gut Microbial Composition and Functional Adaptations between SPF and Non-SPF Pigs

  • Haesun Lee;Woncheoul Park;Jingu No;Nam Woong Hyung;Ju-Yeong Lee;Seokho Kim;Hyeon Yang;Poongyeon Lee;Eunju Kim;Keon Bong Oh;Jae Gyu Yoo;Seunghoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1484-1490
    • /
    • 2024
  • The gut microbiota is a key factor significantly impacting host health by influencing metabolism and immune function. Its composition can be altered by genetic factors, as well as environmental factors such as the host's surroundings, diet, and antibiotic usage. This study aims to examine how the characteristics of the gut microbiota in pigs, used as source animals for xenotransplantation, vary depending on their rearing environment. We compared the diversity and composition of gut microbiota in fecal samples from pigs raised in specific pathogen-free (SPF) and conventional (non-SPF) facilities. The 16S RNA metagenome sequencing results revealed that pigs raised in non-SPF facilities exhibited greater gut microbiota diversity compared to those in SPF facilities. Genera such as Streptococcus and Ruminococcus were more abundant in SPF pigs compared to non-SPF pigs, while Blautia, Bacteroides, and Roseburia were only observed in SPF pigs. Conversely, Prevotella was exclusively present in non-SPF pigs. It was predicted that SPF pigs would show higher levels of processes related to carbohydrate and nucleotide metabolism, and environmental information processing. On the other hand, energy and lipid metabolism, as well as processes associated with genetic information, cell communication, and diseases, were predicted to be more active in the gut microbiota of non-SPF pigs. This study provides insights into how the presence or absence of microorganisms, including pathogens, in pig-rearing facilities affects the composition and function of the pigs' gut microbiota. Furthermore, this serves as a reference for tracing whether xenotransplantation source pigs were maintained in a pathogen-controlled environment.

Association of a Single Nucleotide Polymorphism with Economic Traits in Porcine Uncoupling Protein 3 Gene (돼지의 UCP3 유전자의 단일염기서열 변이와 경제형질과의 연관성 분석)

  • Oh, Jae-Don;Lee, Kun-Woo;Jung, Il-Jung;Jeon, Gwang-Joo;Lee, Hak-Kyo;Kong, Hong-Sik
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.155-158
    • /
    • 2011
  • Uncoupling protein (UCP) 3 has a number of proposed roles in the regulation of fatty acid metabolism. A number of polymorphisms in the human UCP3 gene have been identified, and the correlation with obesity related phenotypes evaluated. The objective of this study was to identify SNP in porcine UCP3 gene and to investigate the effect of the SNP on economic traits. The sequencing analysis method was used to identify nucleotide polymorphisms at position 1405 bp (Genebank accession No : AY739704) in porcine UCP3 gene. The SNP (G150R), located in the exon 3, changed the amino acid to glycine (GGG) from arginine (AGG). This G150R showed three genotypes - GG, GR and RR - by digestion with the restriction enzyme Sma Ⅰ using the PCR-RFLP method. The G150R showed significant effects only on back fat (P<0.05). Animals with the genotype GG had significantly higher back fat thickness (1.358 cm) than animals with the genotype GR (1.288 cm, P<0.05) and RR (1.286 cm, P<0.05). However, the genotypes had no significant association with ADG and days to 90kg. According to results of this study, a G allele of the G150R was found to have a significant effect on back fat thickness. It will be possible to use SNP markers on selected pigs to improve backfat thickness, an important economic trait.

The +1316 T/T Genotype in the Exon 3 of Uncoupling Protein Gene is Associated with Daily Percent Lay in Korean Native Chicken (한국 재래 닭의 Uncoupling Protein 유전자 Exon 3에서의 +1316 T/T 유전자형이 산란율에 미치는 효과 분석)

  • Oh J. D.;Lee J. H.;Hong Y. S.;Lee S. J.;Lee S. G.;Kong H. S.;Sang B. D.;Choi C. H.;Cho B. W.;Jeon G. J.;Lee H. K.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.4
    • /
    • pp.239-244
    • /
    • 2005
  • Uncoupling protein(UCP) is expressed exclusively in brown adipose tissue(BAT). It is blown to uncouple phosphorylation from oxidation and hence to be involved in energy metabolism and heat production, especially under cold exposure. In the present study, we identified single nucleotide polymorphism(SNP) in exon 3 of avUCP gene in Korean native chicken(KNC) population. It was detected a SNP T+1316C in exon 3 of avUCP gene by sequence analysis in KNC population. For PCR-RFLP analysis of the SNP T+1316C, used by AP III restriction enzyme. The result of PCR-RFLP analysis showed that allele T has two fragments of 255 bp and 86 bp, and allele C has only one fragment of 341 bp. The genotype frequencies were TT type, 0.7875; TC type, 0.1875 and CC type, 0.025; and the frequencies of allele T and C were 0.881 and 0.119, respectively in KNC population. Next study was conducted to investigate the effect of the SNP in avUCP gene on economic traits in the KNC population. The TT genotype had a significant higher daily percent lay(84.61) than CC genotype(p<0.05) in KNC population. This study may be useful for genetic studies of avCUP gene and selection on daily percent lay of KNC.

Study on the fatty acid profile of phospholipid and neutral lipid in Hanwoo beef and their relationship to genetic variation

  • Beak, Seok-Hyeon;Lee, Yoonseok;Lee, Eun Bi;Kim, Kyoung Hoon;Kim, Jong Geun;Bok, Jin Duck;Kang, Sang-Kee
    • Journal of Animal Science and Technology
    • /
    • v.61 no.2
    • /
    • pp.69-76
    • /
    • 2019
  • Maize which has very high omega-6 fatty acid content has been used as a main feed grain for Hanwoo beef production to increase marbling, and thus omega-6 to omega-3 fatty acids ratio in Hanwoo beef is expected to be biased. To elucidate the current status of omega fatty acids ratio in Hanwoo beef, fatty acid profiles of neutral lipid and phospholipid fraction were analyzed separately using 55 Hanwoo steers' longissimus dorsi muscle slaughtered at Pyeongchang, Korea from Oct. to Nov. 2015. In addition, an association study was conducted to evaluate associations between single nucleotide polymorphism (SNP) markers from references and omega fatty acid profiles in phospholipid of Hanwoo beef samples using analysis of variance (ANOVA). In neutral lipid fraction, composition of saturated and monounsaturated fatty acids was higher and polyunsaturated fatty acids was lower compared to those in phospholipid fraction. The mean n-6/n-3 ratios of Hanwoo were $56.059{\pm}16.180$ and $26.811{\pm}6.668$ in phospholipid and neutral lipid, respectively. There were three SNPs showing statistically significant associations with omega fatty acid content. GA type of rs41919985 in fatty acid synthase (FASN) was significantly associated with the highest amount of C20:5 n-3 (p = 0.031). CC type of rs41729173 in fatty acid-binding protein 4 (FABP4) was significantly associated with the lowest amount of C22:2n-6 (p = 0.047). AG type of rs42187261 in FADS1 was significantly linked to the lowest concentration of C20:4 n-6 (p = 0.044). The total n-6/n-3 ratio of the steer which has all four SNP types in above loci (27.905) was much lower than the mean value of the total n-6/n-3 ratio in phospholipid of the 55 Hanwoo steers ($56.059{\pm}16.180$). It was found that phospholipid and neutral lipid of Hanwoo have very high n-6/n-3 ratios compared to the reported data from different cow breeds. Four SNPs in genes related with fatty acid metabolism showed significant associations with the fatty acid profile of phospholipid and may have potential as SNP markers to select Hanwoo steers in terms of n-6/n-3 balance in the future.

Functional Significance of Cytochrome P450 1A2 Allelic Variants, P450 1A2*8, *15, and *16 (R456H, P42R, and R377Q)

  • Lim, Young-Ran;Kim, In-Hyeok;Han, Songhee;Park, Hyoung-Goo;Ko, Mi-Jung;Chun, Young-Jin;Yun, Chul-Ho;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.189-194
    • /
    • 2015
  • P450 1A2 is responsible for the metabolism of clinically important drugs and the metabolic activation of environmental chemicals. Genetic variations of P450 1A2 can influence its ability to perform these functions, and thus, this study aimed to characterize the functional significance of three P450 1A2 allelic variants containing nonsynonymous single nucleotide polymorphisms (P450 $1A2^*8$, R456H; $^*15$, P42R; $^*16$, R377Q). Variants containing these SNPs were constructed and the recombinant enzymes were expressed and purified in Escherichia coli. Only the P42R variant displayed the typical CO-binding spectrum indicating a P450 holoenzyme with an expression level of ~ 170 nmol per liter culture, but no P450 spectra were observed for the two other variants. Western blot analysis revealed that the level of expression for the P42R variant was lower than that of the wild type, however the expression of variants R456H and R377Q was not detected. Enzyme kinetic analyses indicated that the P42R mutation in P450 1A2 resulted in significant changes in catalytic activities. The P42R variant displayed an increased catalytic turnover numbers ($k_{cat}$) in both of methoxyresorufin O-demethylation and phenacetin O-deethylation. In the case of phenacetin O-deethylation analysis, the overall catalytic efficiency ($k_{cat}/K_m$) increased up to 2.5 fold with a slight increase of its $K_m$ value. This study indicated that the substitution P42R in the N-terminal proline-rich region of P450 contributed to the improvement of catalytic activity albeit the reduction of P450 structural stability or the decrease of substrate affinity. Characterization of these polymorphisms should be carefully examined in terms of the metabolism of many clinical drugs and environmental chemicals.

The MTHFR C677T Polymorphism and Prostate Cancer Risk: New Findings from a Meta-analysis of 7306 Cases and 8062 Controls

  • Zhang, Wei-Bing;Zhang, Jun-Hong;Pan, Zheng-Qi;Yang, Qi-Sheng;Liu, Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2597-2604
    • /
    • 2012
  • Methylenetetrahydrofolate reductase (MTHFR) is an essential enzyme involved in folate metabolism; a single nucleotide polymorphism (SNP) C677T has been reported to be linked with altered incidences of several diseases. We here conducted a meta-analysis of 15 published epidemiological studies with a total of 7306 cases and 8062 controls to evaluate its association with prostate cancer risk with overall and subgroup analyses. No statistical relationship was found overall with any genetic model (TT vs. CC: OR = 0.80, 95%CI = [0.62, 1.04], P = 0.094; CT vs. CC: OR = 0.97, 95%CI = [0.84; 1.12], P = 0.667; Dominant: OR = 0.94, 95%CI = [0.82; 1.07], P = 0.343; Recessive: OR = 0.81, 95%CI = [0.64; 1.04], P = 0.104), but after the exclusion of several studies, we could observe the homozygote TT to confer less susceptibility to prostate cancer in carriers; moreover, different effects of the polymorphism on prostate cancer risk was detected from subgroup analysis stratified by participants' residential region: significant reduced prostate cancer risk was found to be associated with the polymorphism from Asian studies (TT vs. CC: OR = 0.47, 95%CI = [0.33; 0.67], P < 0.001; CT vs. CC: OR = 0.73, 95%CI = [0.60; 0.90], P = 0.002; Dominant: OR = 0.67, 95%CI = [0.56; 0.82], P < 0.001; Recessive: OR = 0.55, 95%CI = [0.40; 0.76], P < 0.001) while studies from Europe indicated a slight increased risk under dominant model with marginal significance (OR = 1.14, 95%CI = [0.99; 1.30], P = 0.064). Moreover, the protective effect of the polymorphism against prostate cancer was also shown by studies performed in yellow Asians (TT vs. CC: OR = 0.48, 95%CI = [0.31; 0.75], P = 0.001; CT vs. CC: OR = 0.68, 95%CI = [0.51; 0.90], P = 0.006; Dominant: OR = 0.63, 95%CI = [0.48; 0.82], P < 0.001; Recessive: OR = 0.57, 95%CI = [0.39; 0.84], P = 0.004). We propose that these phenomena should be viewed with the consideration of folate metabolism profile and different gene background as well as living habits of different populations, and more relevant studies should be conducted to confirm our hypothesis and provide a comprehensive and clear picture concerning this topic.

Integrative Study on PPARGC1A: Hypothalamic Expression of Ppargc1a in ob/ob Mice and Association between PPARGC1A and Obesity in Korean Population

  • Hong, Mee-Suk;Kim, Hye-Kyung;Shin, Dong-Hoon;Song, Dae-Kyu;Ban, Ju Yeon;Kim, Bum Shik;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.318-322
    • /
    • 2008
  • Obesity is an increasing worldwide health problem that is strongly related to the imbalance of food intake and energy metabolism. It was well-known that several substances in the hypothalamus regulate food intake and energy metabolism. We planned an integrative study to elucidate the mechanism of the development of obesity. Firstly, to find candidate genes with the marvelous effect, the different expression in the hypothalamus between ob/ob and 48-h fasting mice was investigated by using DNA microarray technology. As a result, we found 3 genes [peroxisome proliferator activated receptor, gamma, coactivator 1 alpha (Ppargc1a), calmodulin 1 (Calm1), and complexin 2 (Cplx2)] showing the different hypothalamic expression between ob/ob and 48-h fasting mice. Secondly, a genetic approach on PPARGC1A gene was performed, because PPARGC1A acts as a transcriptional coactivator and a metabolic regulator. Two hundred forty three obese female patients with body mass index (BMI)${\geq}$25 and 285 control female subjects with BMI 18 to<23 were recruited according to the Classification of Korean Society for the Study of Obesity. Among the coding single nucleotide polymorphisms (cSNPs) of PPARGC1A, 2 missense SNPs (rs8192678, Gly482Ser; rs3736265, Thr612Met) and 1 synonymous SNP (rs3755863, Thr528Thr) were selected, and analyzed by PCR-RFLP and pyrosequencing. For the analysis of genetic data, chi-square ($X^2$) test and EH program were used. The rs8192678 was significantly associated with obese women (P<0.0006; odds ratio, 1.5327; 95% confidence interval, 1.2006-1.9568). Haplotypes also showed significant association with obese women ($X^2$=33.28, P<0.0008). These results suggest that PPARGC1A might be related to the development of obesity.

Genome-wide association study for the interaction between BMR and BMI in obese Korean women including overweight

  • Lee, Myoungsook;Kwon, Dae Young;Kim, Myung-Sunny;Choi, Chong Ran;Park, Mi-Young;Kim, Ae-jung
    • Nutrition Research and Practice
    • /
    • v.10 no.1
    • /
    • pp.115-124
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: This is the first study to identify common genetic factors associated with the basal metabolic rate (BMR) and body mass index (BMI) in obese Korean women including overweight. This will be a basic study for future research of obese gene-BMR interaction. SUBJECTS/METHODS: The experimental design was 2 by 2 with variables of BMR and BMI. A genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) was conducted in the overweight and obesity (BMI > $23kg/m^2$) compared to the normality, and in women with low BMR (< 1426.3 kcal/day) compared to high BMR. A total of 140 SNPs reached formal genome-wide statistical significance in this study (P < $1{\times}10^{-4}$). Surveys to estimate energy intake using 24-h recall method for three days and questionnaires for family history, a medical examination, and physical activities were conducted. RESULTS: We found that two NRG3 gene SNPs in the 10q23.1 chromosomal region were highly associated with BMR (rs10786764; $P=8.0{\times}10^{-7}$, rs1040675; $2.3{\times}10^{-6}$) and BMI (rs10786764; $P=2.5{\times}10^{-5}$, rs10786764; $6.57{\times}10^{-5}$). The other genes related to BMI (HSD52, TMA16, MARCH1, NRG1, NRXN3, and STK4) yielded P < $10{\times}10^{-4}$. Five new loci associated with BMR and BMI, including NRG3, OR8U8, BCL2L2-PABPN1, PABPN1, and SLC22A17 were identified in obese Korean women (P < $1{\times}10^{-4}$). In the questionnaire investigation, significant differences were found in the number of starvation periods per week, family history of stomach cancer, coffee intake, and trial of weight control in each group. CONCLUSION: We discovered several common BMR- and BMI-related genes using GWAS. Although most of these newly established loci were not previously associated with obesity, they may provide new insights into body weight regulation. Our findings of five common genes associated with BMR and BMI in Koreans will serve as a reference for replication and validation of future studies on the metabolic rate.

Identifying Genes Related with Self-thinning Characteristics in Apple by Differential Display PCR (Differential Display PCR을 이용한 사과 자가적과성 연관 유전자 탐색)

  • Kim, Se Hee;Heo, Seong;Shin, Il Sheob;Kim, Jeong-Hee;Cho, Kang-Hee;Kim, Dae-Hyun;Hwang, Jeong Hwan
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.565-573
    • /
    • 2010
  • Thinning of apple fruitlets is one of the most laborious and important works for the improvement of fruit quality and for the promotion of sufficient flower bud formation to prevent alternate bearing in commercial cultivars. Lateral fruits of self-thinning apple cultivars fall naturally within 30 days after full bloom and only central fruit remains to mature. Differences of gene expression between central fruit and lateral fruit were investigated by differential display (DD) PCR. Partial cDNAs of 30 clones from the central fruit and 24 clones from the lateral fruit were selected for nucleotide sequence determination and homology searches. The levels of transcripts coding for proteins involved in pathogenesis related proteins, senescence, temperature stress, protein degradation, fruit browning, sorbitol metabolism were significantly higher in pedicels of lateral fruit than in pedicels of central fruit. On the other hand, the up-regulation of proteins involved in anthocyanin and flavanol biosynthesis and ethylene synthesis were observed in pedicels of central fruit. In Real time PCR analysis, cytochrome P450 gene was confirmed as showing a higher expression level in lateral fruit than in central fruit. The results of this study indicate that differentially expressed genes are related to self-thinning characteristics in apple tree.