• Title/Summary/Keyword: nuclear transcription factor-kappa B(NF-${\kappa}B$)

Search Result 193, Processing Time 0.034 seconds

Role of PI3-Kinase/Akt Pathway in the Activation of Etoposide-Induced $NF-{\kappa}B$ Transcription Factor

  • Choi Yong-Seok;Park Heon-Yong;Jeong Sun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.391-398
    • /
    • 2006
  • $NF-{\kappa}B$ is a transcription factor involved in the innate immunity against bacterial infection and inflammation. It is also known to render cells resistant to the apoptosis caused by some anticancer drugs. Such a chemoresistance of cancer cells may be related to the activation of $NF-{\kappa}B$ transcription factor; however, the mechanism of activation is not well understood. Here, we demonstrate that a chemotherapeutic agent, etoposide, independently stimulates the $I{\kappa}B{\alpha}$ degradation pathway and PI3-kinase/Akt signaling pathway: The classical $I{\kappa}B{\alpha}$ degradation pathway leads to the nuclear translocation and DNA binding of p65 subunit through $IKK{\beta}$ kinase, whereas the PI3-kinase/Akt pathway plays a distinct role in activating this transcription factor. The PI3-kinase/Akt pathway acts on the p50 subunit of the $NF-{\kappa}B$ transcription factor and enhances the DNA binding affinity of the p50 protein. It may also explain the role of the PI3-kinase/Akt pathway in the anti-apoptotic function of $NF-{\kappa}B$ during chemoresistance of cancer cells.

NF-κB and Therapeutic Approach

  • Lee, Chang-Hoon;Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.219-240
    • /
    • 2009
  • Since NF-${\kappa}B$ has been identified as a transcription factor associated with immune cell activation, groups of researchers have dedicated to reveal detailed mechanisms of nuclear factor of ${\kappa}B$ (NF-${\kappa}B$) in inflammatory signaling for decades. The various molecular components of NF-${\kappa}B$ transcription factor pathway have been being evaluated as important therapeutic targets due to their roles in diverse human diseases including inflammation, cystic fibrosis, sepsis, rheumatoid arthritis, cancer, atherosclerosis, ischemic injury, myocardial infarction, osteoporosis, transplantation rejection, and neurodegeneration. With regards to new drugs directly or indirectly modulating the NF-${\kappa}B$ pathway, FDA recently approved a proteasome inhibitor bortezomib for the treatment of multiple myeloma. Many pharmaceutical companies have been trying to develop new drugs to inhibit various kinases in the NF-${\kappa}B$ signaling pathway for many therapeutic applications. However, a gene knock-out study for $IKK{\beta}$ in the NF-${\kappa}B$ pathway has given rise to controversies associated with efficacy as therapeutics. Mice lacking hepatocyte $IKK{\beta}$ accelerated cancer instead of preventing progress of cancer. However, it is clear that pharmacological inhibition of $IKK{\beta}$ appears to be beneficial to reduce HCC. This article will update issues of the NF-${\kappa}B$ pathway and inhibitors regulating this pathway.

Sulforaphane Inhibits Osteoclastogenesis by Inhibiting Nuclear Factor-κB

  • Kim, Soo-Jin;Kang, So-Young;Shin, Hyun-Hee;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.364-370
    • /
    • 2005
  • We show that sulforaphane inhibits osteoclastogenesis in the presence of macrophage colony-stimulating factor (M-CSF) and receptor for activation of nuclear factor-${\kappa}B$ ligand (RANKL) in osteoclast (OC) precursors. Sulforaphane, an aliphatic isothiocyanate, is a known cancer chemo-preventative agent with anti-oxidative properties. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$) is a critical transcription factor in RANKL-induced osteoclastogenesis, and electrophoretic mobility shift assays (EMSAs) and assay of NF-${\kappa}B$-mediated secreted alkaline phosphatase (SEAP) revealed that sulforaphane selectively inhibited NF-${\kappa}B$ activation induced by RANKL. Inhibition may involve interaction of sulforaphane with thiol groups, since it was prevented by reducing agents.

Activation of the NF-$\kappa$B p50/p65 Complex in Human Lung Cancer Cell Lines (인체 폐암세포주에서 NF-$\kappa$B p50/p65 Complex의 활성화)

  • Choi, Hyung-Seok;Yoo, Chul-Gyu;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.185-194
    • /
    • 1999
  • Background: NF-$\kappa$B is a characteristic transcriptional factor whose functional activity is determined by post-translational modification of protein and subsequent change of subcellular localization. The involvement of the NF-$\kappa$B family of the transcription factors in the control of such vital cellular functions as immune response, acute phase reaction, replication of certain viruses and development and differentiation of cells has been clearly documented in many previous studies. Several recent observations have suggested that the NF-$\kappa$B might also be involved in the carcinogenesis of some hematological and solid tumors. Investigating the possibility that members of the NF-$\kappa$B family participate in the molecular control of malignant cell transformation could provide invaluable information on both molecular pathogenesis and cancer-related gene therapy. Method: To determine the expression patterns and functional roles of NF-$\kappa$B family transcription factors in human lung cancer cell lines NCI-H792, NCI-H709, NCI-H226 and NCI-H157 were analysed by western blot, using their respective antibodies. The nuclear and the cytoplasmic fraction of protein extract of these cell lines were subsequently obtained and NF-$\kappa$B expression in each fraction was again determined by western blot analysis. The type of NF-$\kappa$B complex present in the cells was determined by immunoprecipitation. To detect the binding ability of cell-line nuclear extracts to the KB consensus oligonucleotide, electrophoretic mobility shift assay(EMSA) was performed. Results: In the cultured human lung cancer cell lines tested, transcription factors of the NF-$\kappa$B family, namely the p50 and p65 subunit were expressed and localized in the nuclear fraction of the cellular extract by western blot analysis and immunocytochemistry. Immunoprecipitation assay showed that in the cell, the p50 and p65 subunits made NF-$\kappa$B complex. Finally it was shown by Electrophoretic Mobility Shift Assay(EMSA) that nuclear extracts of lung cancer cell lines are able to bind to NF-$\kappa$B consensus DNA sequences. Conclusion: These data suggest that in human lung cancer cell lines the NF-$\kappa$B p50/p65 complex might be activated. and strengthen the hypothesis that NF-$\kappa$B family transcription factors might be involved in the carcinogenesis of human lung cancer.

  • PDF

ent-Kaurane Diterpenoids from Croton tonkinensis Inhibit LPS-induced Transcription Factor NF-${\kappa}{B}$ Activation and NO Production

  • Giang, Phan-Minh;Jin, Hui-Zi;Lee, Jung-Joon
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.120.1-120.1
    • /
    • 2003
  • Nuclear factor-${\kappa}{B}$ (NF-${\kappa}{B}$) belongs to a group of homodimers and heterodimers of Rel/NF-${\kappa}{B}$ proteins that bind to DNA target sites, where they directly regulate gene transcription. The activation of NF-${\kappa}{B}$ has been shown to mediate inflammation and suppress apoptosis. Activated NF-${\kappa}{B}$ has been found n various inflammatory diseases such as rheumatoid arthritis, Atherosclerosis, asthma, nflammatory bowel disease, and Helicobacter pylori-associated gastritis and associated with cancer, cachexia, diabetes, euthyroid sick syndrome, and AIDS. (omitted)

  • PDF

Cimicifuga heracleifolia Extract Induces iNOS Expression via a Nuclear Factor-${\kappa}B$-dependent Pathway in Mouse Peritoneal Macrophages

  • Lee, Kyoung-In;Tabassum, Nadia;Pyo, Byoung-Sik;Kim, Sun-Min;Lee, Ik-Soo;Jung, Da-Woon;Yim, Soon-Ho
    • Natural Product Sciences
    • /
    • v.20 no.4
    • /
    • pp.227-231
    • /
    • 2014
  • Cimicifuga heracleifolia extract (CHE) was investigated for its effects on the release of nitric oxide (NO) and at the level of inducible nitric oxide synthase (iNOS) gene expression in mouse macrophages. We found that C. heracleifolia elicited a dose-dependent increase in NO production and the level of iNOS mRNA. Since, iNOS transcription has been shown to be under the control of the transcription factor $NF-{\kappa}B$, the effects of CHE on $NF-{\kappa}B$ activation were examined. Transient expression assays with $NF-{\kappa}B$ binding sites linked to the luciferase gene revealed that the increased level of iNOS mRNA, induced by CHE, was mediated by the $NF-{\kappa}B$ transcription factor complex. By using DNA fragments containing the $NF-{\kappa}B$ binding sequence, CHE was shown to activate the protein/DNA binding of $NF-{\kappa}B$ to its cognate site, as measured by electrophoretic mobility shift assay. These results demonstrate that C. heracleifolia stimulates NO production and is able to up-regulate iNOS expression through $NF-{\kappa}B$ transactivation.

Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity

  • Dilshara, Matharage Gayani;Kang, Chang-Hee;Choi, Yung Hyun;Kim, Gi-Young
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.559-564
    • /
    • 2015
  • We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-$\alpha$-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-$\alpha$-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-$\alpha$ significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-$\alpha$-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-$\alpha$-induced invasion of LNCaP cells. Compared to untreated controls, TNF-$\alpha$-stimulated LNCaP cells showed a significant increase in nuclear factor-${\kappa}B$ (NF-${\kappa}B$) luciferase activity. However, mangiferin treatment markedly decreased TNF-$\alpha$-induced NF-${\kappa}B$ luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-${\kappa}B$ subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-${\kappa}B$-mediated MMP-9 expression.

Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes

  • Cho, Young-Chang;Kim, Ba Reum;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.584-589
    • /
    • 2017
  • Intercellular adhesion molecule-1 (ICAM-1), which is induced by tumor necrosis factor (TNF)-${\alpha}$, contributes to the entry of immune cells into the site of inflammation in the skin. Here, we show that protein tyrosine phosphatase non-receptor type 21 (PTPN21) negatively regulates ICAM-1 expression in human keratinocytes. PTPN21 expression was transiently induced after stimulation with TNF-${\alpha}$. When overexpressed, PTPN21 inhibited the expression of ICAM-1 in HaCaT cells but PTPN21 C1108S, a phosphatase activity-inactive mutant, failed to inhibit ICAM-1 expression. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$), a key transcription factor of ICAM-1 gene expression, was inhibited by PTPN21, but not by PTPN21 C1108S. PTPN21 directly dephosphorylated phospho-inhibitor of ${\kappa}B$ ($I{\kappa}B$)-kinase ${\beta}$ ($IKK{\beta}$) at Ser177/181. This dephosphorylation led to the stabilization of $I{\kappa}B{\alpha}$ and inhibition of NF-${\kappa}B$ activity. Taken together, our results suggest that PTPN21 could be a valuable molecular target for regulation of inflammation in the skin by dephosphorylating p-$IKK{\beta}$ and inhibiting NF-${\kappa}B$ signaling.

Identification of the Constituents for Nrf2 Activation and NF-${\kappa}B$ Suppression in Dangguisoo-san

  • Kim, Kyun-Ha;Jeong, Ja-Haeng;Jeong, Han-Sol;Ha, Ki-Tae;Joo, Myung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.344-350
    • /
    • 2012
  • Previously, we showed that Dangguisoo-san (DGSS), an herbal formula that has been traditionally used for the treatment of blood stagnation, is also applicable for inflammatory lung diseases. Activation of Nrf2, an anti-inflammatory transcription factor, and suppression of NF-${\kappa}B$, a pro-inflammatory transcription factor, were suggested as an underlying mechanism. However, the constituents responsible for these activities remain unidentified. To this end, we prepared the water extracts of the 9 constituents of DGSS and tested for their effect on Nrf2 by using an Nrf2-Luciferase reporter cell line and western blot analysis. Results show that Carthamus tinctorius L.(CT), one of the 9 constituents of DGSS, strongly activated Nrf2. Similarly, when measured the effect of the 9 constituents on NF-${\kappa}B$ by using an NF-${\kappa}B$-Luciferase reporter cell line and western blotting for nuclear p65, indicative of activated NF-${\kappa}B$, most constituents were capable of suppressing NF-${\kappa}B$ in various degrees. However, CT and Cyperus rotundus L. (CR) strongly suppressed NF-${\kappa}B$ activity elicited by LPS. Of note, CT activated Nrf2 and suppressed NF-${\kappa}B$ strongly as well. Our results contributes to corroborating the anti-inflammatory effects of DGSS by identifying CT and CR as two major herbs responsible for activating Nrf2 and suppressing NF-${\kappa}B$. These results suggest that CT and CR represent some of the effects of DGSS in the regulation of inflammation.

Isolation. structure. and NF-${\kappa}$B modulatory activity of Harzianum A and B: trichothecene from fungi(B000527)

  • Jin, Hui-Zi;Lee, Jeong-Hyung;Kim, Young-Ho;Lee, Jung-Joon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.320.3-321
    • /
    • 2002
  • Nuclear factor ${\kappa}$B (NF-${\kappa}$B) represents a family of eukaryotic transcription factors participating in the regulation of various cellular genes. Since aberrant regulation of NF-${\kappa}$B has been implicated in the pathogenesis of various diseases including inflammation. asthma. atherosclerosis. AIDS. septic shock. arthritis, and cancer. this transcription factor has been shown to be an interesting target of new drug discovery. (omitted)

  • PDF