• 제목/요약/키워드: nuclear transcription factor-kappa B(NF-${\kappa}B$)

검색결과 194건 처리시간 0.023초

오라노핀에 의한 nuclear factor κB 활성저해는 Nrf2 활성화와 무관한 기전에 의함 (Auranofin Downregulates Nuclear Factor-κB Activation via Nrf2-Independent Mechanism)

  • 김남훈;박효정;김인숙
    • 생명과학회지
    • /
    • 제20권12호
    • /
    • pp.1772-1776
    • /
    • 2010
  • 내재면역반응의 중요한 조절자인 Nrf2와 NF-${\kappa}B$는 염증시에 교차 작용을 통하여 서로의 전사활성을 조절할 수 있다고 보고된 바 있으나 상반된 결과도 제시되고 있어서 아직까지 확실하게 규명되어 있지 않다. 저자들은 선행연구에서 NF-${\kappa}B$ 저해제인 금(I)-화합물 오라노핀이 인간 관절활막세포와 단핵구성 세포에서 Nrf2를 활성화시킴을 확인한 바 있기 때문에, 본 연구에서는 Nrf2를 knockdown 시킨 류마티스성 활막세포를 사용하여 오라노핀에 의해 저해되는 NF-${\kappa}B$ 신호전달 과정에 Nrf2가 관여하는지를 조사하였다. 세포를 Nrf2 siRNA로 transfection시켰을 때 Nrf2 발현은 대부분 차단됨을 확인하였다. 하지만 Nrf2 knockdown은 TNF-$\alpha$에 의해 유도되는 $I{\kappa}B-{\alpha}$ 분해를 막는 오라노핀의 작용에는 영향을 주지 않았다. Nrf2 target 단백질로서 항염 작용에 관여하는 HO-1을 knockdown 시켰을 경우에도 $I{\kappa}B-{\alpha}$ 분해를 저해하는 오라노핀의 작용에 영향을 미치지 않았다. 또한, Nrf2 knockdown은 오라노핀에 의해 저해된 ICAM-1 발현을 다시 복원시키지 못했다. 이러한 결과들은 염증성 싸이토킨에 의해 유도되는 NF-${\kappa}B$ 활성화를 오라노핀이 저해하는 기전에 Nrf2 및 HO-1이 관련되어 있지 않음을 시사한다. 따라서 류마티스성 관절활막세포에서 오라노핀의 항염작용 기전으로 알려진 Nrf2/HO-1 활성유도와 NF-${\kappa}B$ 활성저해는 교차작용 없이 각각 독립적인 기전을 통해 나타나는 것으로 생각된다.

Oleanane-triterpenoids from Panax stipuleanatus inhibit NF-κB

  • Liang, Chun;Ding, Yan;Song, Seok Bean;Kim, Jeong Ah;Nguyen, Manh Cuong;Ma, Jin Yeul;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • 제37권1호
    • /
    • pp.74-79
    • /
    • 2013
  • In continuation of our research to find biological components from Panax stipuleanatus, four oleanane-type triterpenes (12 to 15) were isolated successively. Fifteen oleanane-type saponins (1 to 15) were evaluated for nuclear factor (NF)-${\kappa}B$ activity using a luciferase reporter gene assay in HepG2 cells. Compounds 6 to 11 inhibited NF-${\kappa}B$, with $IC_{50}$ values between 3.1 to 18.9 ${\mu}M$. The effects on inducible nitric oxide synthase and cyclooxygenase-2 by compounds 8, 10, and 11 were also examined using reverse transcription-polymerase chain reaction. Three compounds (8, 10, and 11) inhibited NF-${\kappa}B$ activity by reducing the concentration of inflammatory factors in HepG2 cells.

TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-κB

  • Lee, Soo-Woong;Han, Sang-In;Kim, Hong-Hee;Lee, Zang-Hee
    • BMB Reports
    • /
    • 제35권4호
    • /
    • pp.371-376
    • /
    • 2002
  • The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiaion, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-${\kappa}B$ and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). In the signal transduction of RANK, the recruitment of the adaptor molecules, TNF receptor-associated factors (TRAFs), is and initial cytoplasmic event. Recently, the association of the MAPK kinase kinase, transforming growth factor-$\beta$-activated kinase 1 (TAK1), with TRAF6 was shown to mediate the IL-1 signaling to NF-${\kappa}B$ and JNK. We investigated whether or not TAK1 plays a role in RANK signaling. A dominant-negative form of TAK1 was discovered to abolish the RANK-induced activation of AP1 and JNK. The AP1 activation by TRAF2, TRAF5, and TRAF6 was also greatly suppressed by the dominant-negative TAK1. the inhibitory effect of the TAK1 mutant on RANK-and TRAF-induced NF-${\kappa}B$ activation was also observed, but less efficiently. Our findings indicate that TAK1 is involved in the MAPK cascade and NF-${\kappa}B$ pathway that is activated by RANK.

Downregulation of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in human keratinocytes by melanogenic inhibitors

  • Ahn, Kwang-Seok;Lee, Jinseon;Kim, Yeong-Shik
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.780-803
    • /
    • 2003
  • Exposure of skin cells, particularly keratinocytes to various nuclear factor-kappaB ($\textrm{NF}_{-{\kappa}}\textrm{B}$) activators [e.g. tumor necrosis factor-$\alpha$, interleukin-1, lipopolysaccharides, and ultraviolet light] leads to phosphorylation and degradation of the inhibitory protein, $\textrm{I}_{{\kappa}}\textrm{B}$. Liberated $\textrm{NF}_{-{\kappa}}\textrm{B}$ is translocated into the nucleus where it can change or alter expression of target genes, resulting in the secretion of extracellular signaling molecules including melanotrophic factors affecting melanocyte. In order to demonstrate the possible role of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation on the synthesis of melanotrophic factors from the keratinocytes, the activities of $\textrm{NF}_{-{\kappa}}\textrm{B}$ induced by melanogenic inhibitors (MIs) were determined in human HaCaT keratinocytes transfected with $\textrm{pNF}_{-{\kappa}}\textrm{B}$-SEAP-NPT plasmid. Transfectant cells released the secretory alkaline phosphatase (SEAP) as a transcription reporter in response to the $\textrm{NF}_{-{\kappa}}\textrm{B}$ activity and contain the neomycin phosphotransferase (NPT) gene for the dominant selection marker for geneticin resistance. MIs such as niacinamide, kojic acid, hydroquinone, resorcinol, arbutin, and glycolic acid were preincubated with transfectant HaCaT cells for 3 h and then ultraviolet B (UVB) was irradiated. $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation was measured with the SEAP reporter gene assay using a fluorescence detection method. Of the Mis tested, kojic acid ($IC_{50}$/ = 60 $\mu$M) was found to be the most potent inhibitor of UVB-upregulating $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in transfectant HaCaT cells, which is followed by niacinamide ($IC_{50}$/= 540 $\mu$M). Pretreatment of the transfectant HaCaT cells with the Mis, especially kojic acid and niacinamide, effectively lowered $\textrm{NF}_{-{\kappa}}\textrm{B}$ binding measured by electrophoretic mobility shift assay. Furthermore, these two inhibitors remarkably reduced the secretion level of IL-6, one of melanotrophic factors, triggered by UV-radiation of the HaCaT cells. These observations suggest that Mis working at the in vivo level might act partially through the modulation of the synthesis of melanotrophic factors in keratinocyte.

  • PDF

Sinensetin Inhibits Interleukin-6 in Human Mast Cell - 1 Via Signal Transducers and Activators of the Transcription 3 (STAT3) and Nuclear Factor Kappa B (NF-κB) Pathways

  • Chae, Hee-Sung;Kim, Young-Mi;Chin, Young-Won
    • Natural Product Sciences
    • /
    • 제23권1호
    • /
    • pp.1-4
    • /
    • 2017
  • Sinensetin, a pentamethoxyflavone, is known to exert various pharmacological activities including anti-angiogenesis, anti-diabetic and anti-inflammatory activities. However, its effects on the human mast cell - 1 (HMC-1) mediated inflammatory mechanism remain unknown. To explore the mediator and cellular inflammatory response of sinensetin, we examined its influence on phorbol 12-myristate 13-acetate (PMA) plus A23187 induced inflammatory mediator production in a human mast cell line. In this study, interleukin (IL)-6 production was measured using the enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction. Sinensetin inhibited PMA plus A23187 induced IL-6 production in a dose-dependent manner as well as IL-4, IL-5 and IL-8 mRNA expression. Furthermore, sinensetin inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, suggesting that sinensetin inhibits the production of inflammatory mediators by blocking STAT3 phosphorylation. Moreover, sinensetin was found to inhibit nuclear factor kappa B activation. These findings suggest that sinensetin may be involved in the regulation of mast cell-mediated inflammatory responses.

폐 상피세포에서 NF-${\kappa}B/I{\kappa}B$ 경로에 의한 염증매개 사이토카인의 발현 (Pro-inflammatory Cytokine Expression Through NF-${\kappa}B/I{\kappa}B$ Pathway in Lung Epithelial Cells)

  • 박계영;이승희;황보빈;임재준;이춘택;김영환;한성구;심영수;유철규
    • Tuberculosis and Respiratory Diseases
    • /
    • 제49권3호
    • /
    • pp.332-342
    • /
    • 2000
  • 연구배경 : 염증매개 사이토카인은 염증성 폐질환의 중요한 매개물질이다. 폐 상피세포는 염증세포에서 분비되는 사이토카인에 의해 interleukin, chemokines, colony stimulating factors와 growth factor등을 생산 및 분비함으로써 국소 염증 부위에서의 사이토카인 network에 중요한 역할을 한다. 따라서 폐 상피세포에서 염증매개 사이토카인의 발현 기전에 대한 이해는 염증성 폐질환의 기전규명과 이에 기초한 새로운 치료법의 개발에 생각된다. 대부분의 사이토카인은 NF-${\kappa}B$전사인자에 의해 발현되는데 폐 상피세포에서 염증매개 사이토키인의 발현과 NF-${\kappa}B/I{\kappa}B$ 경로와의 관련성에 관한 연구는 부족한 실정이다. 방법 : BEAS-2B, A549, NCI-H157, NCI-H719 세포에서 IL-1$\beta$와 TNF-$\alpha$ 자극에 의한 IL-8과 TNF-$\alpha$ mRNA의 발현 양상을 평가하였고 이들의 발현과 관찰하였고 NF-${\kappa}B/I{\kappa}B$ 경로와의 관련성을 평가하기 위하여 IL-l$\beta$와 TNF-$\alpha$ 자극에 의한 NF-${\kappa}B$의 활성화 및 $I{\kappa}B{\alpha}$$I{\kappa}B{\beta}$의 분해 양상을 관찰하였다. 폐 상피세포의 종류에 따른 NF-${\kappa}B/I{\kappa}B$ 경로 조절의 기전을 규명하고자 IL-1$\beta$와 TNF-$\alpha$ 자극에 의한 $I{\kappa}B{\alpha}$의 인산화와 기저상태에서 IKK$\alpha$의 발현을 평가하였다. 결과 : BEAS-2B, A549, NCI-H157 세포에서는 IL-1$\beta$와 TNF-$\alpha$ 자극으로 $I{\kappa}B{\alpha}$$I{\kappa}B{\beta}$가 분해되었고 NF-${\kappa}B$의 활성화가 관찰되었으며 IL-8과 TNF-$\alpha$mRNA의 발현이 유도되었다. NCI-H719 세포에서는 IL-1$\beta$와 TNF-$\alpha$ 자극으로 $I{\kappa}B$ 분해에 의한 NF-${\kappa}B$의 활성화 및 염증매개 사이토카인의 발현이 관찰되지 않았다. BEAS-2B, A549, NCI-H157 세포에서는 IL-1$\beta$와 TNF-$\alpha$ 자극으로 ${\kappa}B$의 인산화가 관찰되었지만 NCI-H719 세포에서는 관찰되지 않았다. 기저상태의 IKK$\alpha$ 발현은 세포간에 차이가 관찰되지 않았다. 결론 : 폐 상피세포에서 NF-${\kappa}B/I{\kappa}B$ 경로는 염증매개 사이토카인 발현에 매우 중요한 역할을 하고, 일부 세포에서는 NF-${\kappa}B/I{\kappa}B$ 경로 조절의 차이를 보이는데 이는 IKK보다 상위 단계의 세포내 신호전달체계의 이상에 기인한 것으로 생각된다.

  • PDF

Luteolin의 IL-1β에 의한 MCP1 단백질 발현 증가에 미치는 영향 (Effects of Luteolin on IL-1β-Induced MCP1 Protein Expression)

  • 임준희;권택규
    • 생명과학회지
    • /
    • 제19권4호
    • /
    • pp.514-519
    • /
    • 2009
  • 혈관벽에 단핵구, 대식세포 등의 세포와 지질 등의 축적은 중요한 동맥경화 발병 요인이다. 이들 세포의 혈관벽으로의 이동에 있어서 chemokine인 MCP1이 중요한 역할을 한다는 것이 많이 알려져 있다. 본 연구에서는 사람 평활근세포에서 $IL-1{\beta}$의 처리에 의하여 MCP1의 발현이 증가되는 기전을 알아보고자 실험을 진행하였다. $IL-1{\beta}$의 처리는 전사인자 $NF-{\kappa}B$의 활성화를 통해 MCP1 발현을 전사단계에서 증가시켰다. 이러한 $IL-1{\beta}$에 의해 증가된 MCP1 발현을 억제하는 물질을 찾기 위해 여러 항염증작용을 하는 물질들을 전처리하여 확인해 본 결과 luteolin이 선택적으로 $IL-1{\beta}$에 의해 증가된 MCP1의 발현을 전사단계에서 저해하는 것을 확인하였고 이는 전사인자 $NF-{\kappa}B$가 핵으로 이동하는 것을 감소시킴으로써 나타나는 현상임을 확인하였다. Luteolin이 염증작용을 조절하는데 있어서 중요한 전사인자인 $NF-{\kappa}B$의 활성을 조절한다는 것을 본 실험을 통해 알 수 있었고 이는 식용식물에서 일반적으로 발견되는 luteolin이 어떠한 기전으로 항 염증작용을 하는지에 대한 이해를 높여줄 것이다.

Nitric Oxide Prevents the Bovine Cerebral Endothelial Cell Death Induced by Serum-Deprivation

  • Kim, Chul-Hoon;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권5호
    • /
    • pp.515-521
    • /
    • 1997
  • Endothelial cells play a central role in the inflammatory processes, and activation of nuclear factor kappa B ($NF-_{\kappa}B$) is a key component in that inflammatory processes. Previously, we reported that tumor necrosis factor alpha($TNF{\alpha}$) had protective effect of cell death induced by serum deprivation and this protection was related to $NF-_{\kappa}B$ activation. Inducible nitric oxide synthase (iNOS) is a member of the molecules which transcription is regulated mainly by $NF-_{\kappa}B$. And the role of nitric oxide (NO) generated by iNOS on cell viability is still controversial. To elucidate the mechanism of $TNF{\alpha}$ and $NF-_{\kappa}B$ activation on cell death protection, we investigate the effect of NO on the cell death induced by serum- deprivation in bovine cerebral endothelial cells in this study. Addition of $TNF{\alpha}$, which are inducer of iNOS, prevented serum-deprivation induced cell death. Increased expression of iNOS was confirmed indirectly by nitrite measurement. When selective iNOS inhibitors were treated, the protective effect of $TNF{\alpha}$ on cell death was partially blocked, suggesting that iNOS expression was involved in controlling cell death. Exogenously added NO substrate (L-arginine) and NO donors (sodium nitroprusside and S-nitroso-N-acetylpenicillamine) also inhibited the cell death induced by serum deprivation. These results suggest that NO has protective effect on bovine cerebral endothelial cell death induced by serum-deprivation and that iNOS is one of the possible target molecules by which $NF-_{\kappa}B$ exerts its cytoprotective effect.

  • PDF

Nuclear Factor-κB Activation: A Question of Life or Death

  • Shishodia, Shishir;Aggarwal, Bharat B.
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.28-40
    • /
    • 2002
  • Apoptosis is a mode of cell death that plays an important role in both pathological and physiological processes. Research during the last decade has delineated the entire machinery needed for cell death, and its constituents were found to pre-exist in cells. The apoptotic cascade is triggered when cells are exposed to an apoptotic stimulus. It has been known for several years that inhibitors of protein synthesis can potentiate apoptosis that is induced by cytokines and other inducers. Until 1996, it was not understood why protein synthesis inhibitors potentiate apoptosis. Then three reports appeared that suggested the role of the transcription factor NF-${\kappa}B$ activation in protecting the cells from TNF-induced apoptosis. Since then several proteins have been identified that are regulated by NF-${\kappa}B$ and are involved in cell survival, proliferation, and protection from apoptosis. It now seems that when a cell is attacked by an apoptotic stimulus, the cell responds first by activating anti-apoptotic mechanisms, which mayor may not be followed by apoptosis. Whether or not a cell undergoes proliferation, the survival, or apoptosis, appears to involve a balance between the two mechanisms. Inhibitors of protein synthesis seem to suppress the appearance of protein that are involved in anti-apoptosis. The present review discusses how NF-${\kappa}B$ controls apoptosis.

Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-${\kappa}B$/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells

  • Park, Chung Mu;Song, Young-Sun
    • Nutrition Research and Practice
    • /
    • 제7권6호
    • /
    • pp.423-429
    • /
    • 2013
  • Luteolin is a flavonoid found in abundance in celery, green pepper, and dandelions. Previous studies have shown that luteolin is an anti-inflammatory and anti-oxidative agent. In this study, the anti-inflammatory capacity of luteolin and one of its glycosidic forms, luteolin-7-O-glucoside, were compared and their molecular mechanisms of action were analyzed. In lipopolysaccharide (LPS)-activated RAW 264.7 cells, luteolin more potently inhibited the production of nitric oxide (NO) and prostaglandin E2 as well as the expression of their corresponding enzymes (inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) than luteolin-7-O-glucoside. The molecular mechanisms underlying these effects were investigated to determine whether the inflammatory response was related to the transcription factors, nuclear factor (NF)-${\kappa}B$ and activator protein (AP)-1, or their upstream signaling molecules, mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K). Luteolin attenuated the activation of both transcription factors, NF-${\kappa}B$ and AP-1, while luteolin-7-O-glucoside only impeded NF-${\kappa}B$ activation. However, both flavonoids inhibited Akt phosphorylation in a dose-dependent manner. Consequently, luteolin more potently ameliorated LPS-induced inflammation than luteolin-7-O-glucoside, which might be attributed to the differentially activated NF-${\kappa}B$/AP-1/PI3K-Akt pathway in RAW 264.7 cells.