• Title/Summary/Keyword: nuclear transcription factor-kappa B(NF-${\kappa}B$)

Search Result 193, Processing Time 0.028 seconds

Activity and Expression Pattern of NF-κB/P65 in Peripheral Blood from Hepatocellular Carcinoma Patients - Link to Hypoxia Inducible Factor -1α

  • Gaballah, Hanaa Hibishy;Zakaria, Soha Said;Ismail, Saber Abdelrahman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6911-6917
    • /
    • 2014
  • Background: Hepatocellular carcinoma is a complex and heterogeneous tumor with poor prognosis due to frequent intrahepatic spread and extrahepatic metastasis. The molecular mechanisms underlying HCC pathogenesis still remain obscure. Objectives: We aimed to investigate the abundance and the DNA binding activity of nuclear factor kappa B/p65 subunit in peripheral blood mononuclear cells from patients with HCC and to assess its prognostic significance and association with hypoxia inducible factor one alpha (HIF-$1{\alpha}$) in blood. Subjects and methods: This study was carried out on 40 patients classified equally into liver cirrhosis (group I) and HCC (group II), in addition to 20 healthy volunteers (group III). All groups were subjected to measurement of NF-${\kappa}B$/P65 subunit expression levels by real time-PCR, and DNA binding activity was evaluated by transcription factor binding immunoassay. Serum HIF-$1{\alpha}$ levels were estimated by enzyme-linked immunosorbent assay (ELISA). Significant increase of both the expression level and DNA binding activity of NF-${\kappa}B$/P65 subunit together with serum HIF-1 alpha levels was noted in HCC patients compared to liver cirrhosis and control subjects, with significant positive correlation with parameters for bad prognosis of HCC. In conclusion, NF-${\kappa}B$ signaling is activated in HCC and associated with disease prognosis and with high circulating levels of HIF-1 alpha.

Computational Drug Discovery Approach Based on Nuclear Factor-κB Pathway Dynamics

  • Nam, Ky-Youb;Oh, Won-Seok;Kim, Chul;Song, Mi-Young;Joung, Jong-Young;Kim, Sun-Young;Park, Jae-Seong;Gang, Sin-Moon;Cho, Young-Uk;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4397-4402
    • /
    • 2011
  • The NF-${\kappa}B$ system of transcription factors plays a crucial role in inflammatory diseases, making it an important drug target. We combined quantitative structure activity relationships for predicting the activity of new compounds and quantitative dynamic models for the NF-${\kappa}B$ network with intracellular concentration models. GFA-MLR QSAR analysis was employed to determine the optimal QSAR equation. To validate the predictability of the $IKK{\beta}$ QSAR model for an external set of inhibitors, a set of ordinary differential equations and mass action kinetics were used for modeling the NF-${\kappa}B$ dynamic system. The reaction parameters were obtained from previously reported research. In the IKKb QSAR model, good cross-validated $q^2$ (0.782) and conventional $r^2$ (0.808) values demonstrated the correlation between the descriptors and each of their activities and reliably predicted the $IKK{\beta}$ activities. Using a developed simulation model of the NF-${\kappa}B$ signaling pathway, we demonstrated differences in $I{\kappa}B$ mRNA expression between normal and different inhibitory states. When the inhibition efficiency increased, inhibitor 1 (PS-1145) led to long-term oscillations. The combined computational modeling and NF-${\kappa}B$ dynamic simulations can be used to understand the inhibition mechanisms and thereby result in the design of mechanism-based inhibitors.

Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

  • Limtrakul, Pornngarm;Yodkeeree, Supachai;Pitchakarn, Pornsiri;Punfa, Wanisa
    • Nutrition Research and Practice
    • /
    • v.10 no.3
    • /
    • pp.251-258
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS: Pro-inflammatory cytokines including tumor necrosis factor-${\alpha}$ and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B ($NF-{\kappa}B$), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS: Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-${\alpha}$, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and $NF-{\kappa}B$ transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced $NF-{\kappa}B$ and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION: These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, $NF-{\kappa}B$, and MAPKs pathways.

Decreased Neutrophil Apoptosis in Patients with Sepsis is Related to the Activation of NF-κB (패혈증 환자에서 NF-κB 활성화에 의한 호중구 아포프토시스의 억제)

  • Kwon, Sung Youn;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.5
    • /
    • pp.495-509
    • /
    • 2003
  • Background : Neutrophil-mediated inflammation is usually self-limiting, because neutrophils have a remarkably short life span. Prolonged neutrophil survival, which is caused by decreased spontaneous apoptosis, leads to persistent inflammation in sepsis. Because many inflammatory cytokines, which generate signals that delay apoptosis, are regulated by nuclear factor-${\kappa}B$ transcription factor, we hypothesized that nuclear factor-${\kappa}B$ might be related to the reduced neutrophil apoptosis observed in sepsis. Methods : Neutrophils of healthy volunteers and sepsis patients were freshly isolated from venous blood. Neutrophil apoptosis was assayed with two approaches : by counting apoptotic cells under a microscope and by flow cytometry using Annexin V. The activity of nuclear factor-${\kappa}B$ was assessed by immunofluorescent staining or electrophoretic mobility shift assay. Expression of X-linked inhibitor of apoptosis was measured by western blot assay. Results : We confirmed reduced spontaneous neutrophil apoptosis in patients with sepsis. The number of apoptotic neutrophils in patients with sepsis increased to the level of that in healthy controls after cycloheximide treatment, suggesting that decreased spontaneous neutrophil apoptosis is dependent on de novo protein synthesis. In patients with sepsis, basal neutrophil nuclear factor-${\kappa}B$ was activated compared to the level in healthy controls. Moreover, a blockade of nuclear factor-${\kappa}B$ activity reversed the decreased spontaneous neutrophil apoptosis in sepsis patients. Meanwhile, X-linked inhibition of apoptosis expression, which is regulated by nuclear factor-${\kappa}B$, decreased 24 hours after incubation in healthy persons, but persisted for 24 hours in patients with sepsis. Conclusion : These observations suggest that the reduced spontaneous neutrophil apoptosis observed in patients with sepsis may be related to the induction of survival protein by nuclear factor-${\kappa}B$.

Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW 264.7 Macrophage Cells

  • Lee, Jae-Won;Kim, Nam Ho;Kim, Ji-Young;Park, Jun-Ho;Shin, Seung-Yeon;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.216-221
    • /
    • 2013
  • Aromadendrin, a flavonol, has been reported to possess a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-diabetic properties. However, the underlying mechanism by which aromadendrin exerts its biological activity has not been extensively demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of aromadedrin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Aromadendrin significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$. In accordance, aromadendrin attenuated LPS-induced overexpression iNOS and COX-2. In addition, aromadendrin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which sequesters NF-${\kappa}B$ in cytoplasm, consequently inhibiting the nuclear translocation of pro-inflammatory transcription factor NF-${\kappa}B$. To elucidate the underlying signaling mechanism of anti-inflammatory activity of aromadendrin, MAPK signaling pathway was examined. Aromadendrin significantly attenuated LPS-induced activation of JNK, but not ERK and p38, in a concentration-dependent manner. Taken together, the present study clearly demonstrates that aromadendrin exhibits anti-inflammatory activity through the suppression of nuclear translocation of NF-${\kappa}B$ and phosphorylation of JNK in LPS-stimulated RAW 264.7 macrophage cells.

Role of $NF-_{{\kappa}B}$ Binding Sites in the Regulation of Inducible Nitric Oxide Synthase by Tyrosine Kinase

  • Ryu, Young-Sue;Hong, Jang-Hee;Lim, Jong-Ho;Bae, So-Hyun;Ahn, Ihn-Sub;Seok, Jeong-Ho;Lee, Jae-Heun;Hur, Gang-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.55-63
    • /
    • 2001
  • In macrophages, lipopolysaccharide (LPS) alone or in combination with $interferon-{\gamma}\;(IFN-{\gamma})$ has been shown to release a nitric oxide (NO) through the increase of the transcription of the inducible nitric oxide synthase (iNOS) gene. To investigate the exact intracellular signaling pathway of the regulation of iNOS gene transcription by LPS plus $IFN-{\gamma},$ the effects of protein tyrosine kinase (PTK) inhibitor and protein kinase C (PKC) inhibitors on NO production, iNOS mRNA expression, nuclear $factor-_{\kappa}B\;(NF-_{\kappa}B)$ binding activity and the promoter activity of iNOS gene containing two $NF-_{\kappa}B$ sites have been examined in a mouse macrophage RAW 264.7 cells. LPS or $IFN-{\gamma}$ stimulated NO production, and their effect was enhanced synergistically by mixture of LPS and $IFN-{\gamma}.$ The PTK inhibitor such as tyrphostin reduced LPS plus $IFN-{\gamma}-induced$ NO production, iNOS mRNA expression and $NF-_{\kappa}B$ binding activity. In contrast, PKC inhibitors such as H-7, Ro-318220 and staurosporine did not show any effect on them. In addition, transfection of RAW 264.7 cells with iNOS promoter linked to a CAT reporter gene revealed that tyrphostin inhibited the iNOS promoter activity through the $NF-_{\kappa}B$ binding site, whereas PKC inhibitors did not. Taken together, these suggest that PTK, but not PKC pathway, is involved in the regulation of the iNOS gene transcription through the $NF-_{\kappa}B$ sites of iNOS promoter in RAW 264.7 macrophages by LPS plus $IFN-{\gamma}$.

  • PDF

PDTC Inhibits $TNF-{\alpha}-Induced$ Apoptosis in MC3T3E1 Cells

  • Chae, Han-Jung;Bae, Jee-Hyeon;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.199-205
    • /
    • 2003
  • Osteoblasts are affected by TNF-${\alpha}$ overproduction by immune cells during inflammation. It has been suggested that functional $NF-{\kappa}B$ sites are involved in TNF-${\alpha}$-induced bone resorption. Thus, we explored the effect of pyrrolidine dithiocarbamate (PDTC), which potently blocks the activation of nuclear factor $(NF-{\kappa}B)$, on the induction of TNF-${\alpha}$-induced activation of JNK/SAPK, AP-1, cytochrome c, caspase and apoptosis in MC3T3E1 osteoblasts. Pretreatment of the cells with PDTC blocked TNF-${\alpha}$-induced $NF-{\kappa}B$ activation. TNF-${\alpha}$-induced activation of AP-1, another nuclear transcription factor, was suppressed by PDTC. The activation of c-Jun N-terminal kinase, implicated in the regulation of AP-1, was also down regulated by PDTC. TNF-${\alpha}$-induced apoptosis, release of cytochrome c and subsequent activation of caspase-3 were abolished by PDTC. TNF-${\alpha}$-induced apoptosis was partially blocked by Ac-DEVD-CHO, a caspase-3 inhibitor, suggesting that caspase-3 is involved in TNF-${\alpha}$-mediated signaling through $NF-{\kappa}B$ in MC3T3E1 osteoblasts. Thus, these results demonstrate that PDTC, has an inhibitory effect on TNF-${\alpha}$-mediated activation of JNK/SAPK, AP-1, cytochrome c release and subsequent caspase-3, leading to the inhibition of apoptosis. Our study may contribute to the treatment of TNF-${\alpha}$-associated immune and inflammatory diseases such as rheumatoid arthritis and periodontal diseases.

Anti-inflammatory Activity of Fucoidan with Blocking NF-κB and STAT1 in Human Keratinocytes Cells

  • Ryu, Min Ju;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.205-209
    • /
    • 2015
  • Fucoidan, a sulfated polysaccharide is found in several types of edible brown algae. It has shown numerous biological activities; however, the molecular mechanisms on the activity against atopic dermatitis have not been reported yet. We now examined the effects of fucoidan on chemokine production co-induced by TNF-α/IFN-γ, and the possible mechanisms underlying these biological effects. Our data showed that fucoidan inhibited the TNF-α/IFN-γ-induced production of thymus and activation-regulated chemokine (TARC) and macrophagederived chemokine (MDC) mRNA in human keratinocytes HaCaT cells. Also, fucoidan suppressed phosphorylation of nuclear factor kappa B (NF-κB) and activation of signal transducer and activator of transcription (STAT)1 in a dose-dependent manner. In addition, fucoidan significantly inhibited activation of extracellular-signal-regulated kinases (ERK) phosphorylation. These data indicate that fucoidan shows anti-inflammatory effects by suppressing the expression of TNF-α/IFN-γ-induced chemokines by blocking NF-κB, STAT1, and ERK1/2 activation, suggestive of as used as a therapeutic application in inflammatory skin diseases, such as atopic dermatitis.

Potential crosstalk of oxidative stress and immune response in poultry through phytochemicals - A review

  • Lee, M.T.;Lin, W.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.309-319
    • /
    • 2019
  • Phytochemicals which exist in various plants and fungi are non-nutritive compounds that exert numerous beneficial bioactive actions for animals. In recent years following the restriction of antibiotics, phytochemicals have been regarded as a primal selection when dealing with the challenges during the producing process in the poultry industry. The selected fast-growing broiler breed was more fragile when confronting the stressors in their growing environments. The disruption of oxidative balance that impairs the production performance in birds may somehow be linked to the immune system since oxidative stress and inflammatory damage are multi-stage processes. This review firstly discusses the individual influence of oxidative stress and inflammation on the poultry industry. Next, studies related to the application of phytochemicals or botanical compounds with the significance of their antioxidant and immunomodulatory abilities are reviewed. Furthermore, we bring up nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and nuclear factor kappa B ($NF-{\kappa}B$) for they are respectively the key transcription factors involved in oxidative stress and inflammation for elucidating the underlying signal transduction pathways. Finally, by the discussion about several reports using phytochemicals to regulate these transcription factors leading to the improvement of oxidative status, heme oxygenase-1 gene is found crucial for Nrf2-mediated $NF-{\kappa}B$ inhibition.

Effect of Prunetin on TNF-${\alpha}$-Induced MUC5AC Mucin Gene Expression, Production, Degradation of $I{\kappa}B$ and Translocation of NF-${\kappa}B$ p65 in Human Airway Epithelial Cells

  • Ryu, Jiho;Lee, Hyun Jae;Park, Su Hyun;Sikder, Md. Asaduzzaman;Kim, Ju-Ock;Hong, Jang-Hee;Seok, Jeong Ho;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.5
    • /
    • pp.205-209
    • /
    • 2013
  • Background: We investigated whether prunetin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced MUC5AC mucin gene expression, production, inhibitory kappa B ($I{\kappa}B$) degradation and nuclear factor kappa B (NF-kB) p65 translocation in human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with prunetin for 30 minutes and then stimulated with TNF-${\alpha}$ for 24 hours or the indicated periods. MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The effect of prunetin on TNF-${\alpha}$-induced degradation of $I{\kappa}B$ and translocation of NF-${\kappa}B$ p65 was investigated by western blot analysis. Results: We found that incubation of NCI-H292 cells with prunetin significantly inhibited mucin production and down-regulated the MUC5AC gene expression induced by TNF-${\alpha}$. Prunetin inhibited TNF-${\alpha}$-induced degradation of $I{\kappa}B$ and translocation of NF-${\kappa}B$ p65. Conclusion: This result suggests that prunetin inhibits the NF-${\kappa}B$ signaling pathway, which may explain its role in the inhibition of MUC5AC mucin gene expression and production regulated by the NF-${\kappa}B$ signaling pathway.