• 제목/요약/키워드: nuclear stress

검색결과 1,499건 처리시간 0.025초

외면 보수 용접이 원전 고온관 밀림노즐에서의 결함성장에 미치는 영향 (Effects of Outside Repair Welding on the Crack Growth in the Surge Nozzle Weld on the Hot Leg Side in a Nuclear Power Plant)

  • 나경환;윤은섭;박영섭
    • Journal of Welding and Joining
    • /
    • 제29권2호
    • /
    • pp.34-39
    • /
    • 2011
  • Nickel-based austenitic alloys such as Alloy 82 and 182 had been employed as the weld metals in nuclear power plants (NPPs) due to their high corrosion resistance as well as good mechanical properties. However, since the 2000s, the occurrence of primary water stress corrosion cracking has been reported in conjunction with these alloys in domestic and oversea NPPs. In the present work, we assumed an imaginary crack at the inner surface of a surge nozzle weld that had previously experienced the outside repair welding, and constructed its finite element model. Finite element analysis was performed with respect to the heat transfer, and then to the residual stress for obtaining the total applied stress distributions. These stress distributions were finally converted to the stress intensity factors for estimating crack growth rate. From the comparison of crack growth rate curves for the cases of no repair welding and outside repair welding, it was found that the outside repair welding did not exhibit negative effect on the crack growth for the surge nozzle under consideration in this work; in both cases, the cracks stopped growing before they became the through-wall cracks.

SURGE LINE STRESS DUE TO THERMAL STRATIFICATION

  • Jhung, Myung-Jo;Choi, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.239-250
    • /
    • 2008
  • If there is a water flow with a range of temperature inside a pipe, the wanner water tends to float on top of the cooler water because it is lighter, resulting in the upper portion of the pipe being hotter than the lower portion. Under these conditions, such thermal stratification can play an important role in the aging of nuclear power plant piping because of the stress caused by the temperature difference and the cyclic temperature changes. This stress can limit the lifetime of the piping, even leading to penetrating cracks. Investigated in this study is the effect of thermal stratification on the structural integrity of the pressurizer surge line, which is reported to be one of the pipes most severely affected. Finite element models of the surge line are developed using several element types available in a general purpose structural analysis program and stress analyses are performed to determine the response characteristics for the various types of top-to-bottom temperature differentials due to thermal stratification. Fatigue analyses are also performed and an allowable environmental correction factor is suggested.

Determination of true stress-strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis

  • Kweon, Hyeong Do;Kim, Jin Weon;Song, Ohseop;Oh, Dongho
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.647-656
    • /
    • 2021
  • Knowing a material's true stress-strain curve is essential for performing a nonlinear finite element analysis to solve an elastoplastic problem. This study presents a simple methodology to determine the true stress-strain curve of type 304 and 316 austenitic stainless steels in the full range of strain from a typical tensile test. Before necking, the true stress and strain values are directly converted from engineering stress and strain data, respectively. After necking, a true stress-strain equation is determined by iteratively conducting finite element analysis using three pieces of information at the necking and the fracture points. The Hockett-Sherby equation is proposed as an optimal stress-strain model in a non-uniform deformation region. The application to the stainless steel under different temperatures and loading conditions verifies that the strain hardening behavior of the material is adequately described by the determined equation, and the estimated engineering stress-strain curves are in good agreement with those of experiments. The presented method is intrinsically simple to use and reduces iterations because it does not require much experimental effort and adopts the approach of determining the stress-strain equation instead of correcting the individual stress at each strain point.

SA508 탄소강 및 오스테나이트 스테인리스강의 표면잔류응력에 미치는 기계가공효과 (Effects on Machining on Surface Residual Stress of SA 508 and Austenitic Stainless Steel)

  • 이경수;이성호;박치용;양준석;이정근;박재학
    • 대한기계학회논문집A
    • /
    • 제35권5호
    • /
    • pp.543-547
    • /
    • 2011
  • 원자력발전소의 이종용접부에서 일차응력부식균열이 발생하고 있으며 용접부의 잔류응력이 균열발생 및 성장에 기여할 수 있다. 용접부의 잔류응력은 기본적으로 용접에 의해 형성되지만 기계가공에 의해 표면잔류 응력상태가 변화할 수 있다. 본 논문에서는 기계가공이 원전재료인 SA508과 오스테나이트 스테인리스강에 표면잔류응력에 미치는 영향을 평가하였다. 이를 위해 SA508, TP304, F316L 재료를 연마, 연삭, 방전가공으로 가공한 후 표면에 형성되는 잔류응력을 측정하였다. 측정방법은 구멍뚫기법과 엑스선회절법을 사용하였다. 기계가공방법에 따라 각 재료에 미치는 잔류응력의 크기 및 방향, 잔류응력이 형성되는 깊이 등의 특성을 확인하였다.

반복 게이트 심근 Tc-99m-MIBI SPECT로 확인한 디피리다몰 부하에 의한 일과성 심근기절현상 (Transient Prolonged Stunning by Dipyridamole Stress Proved by Post-stress(1 hour) and 24 hour Tc-99m-MIBI Gated SPECT)

  • 이동수;윤석남;이원우;정준기;이명묵;이명철;고창순
    • 대한핵의학회지
    • /
    • 제31권1호
    • /
    • pp.57-66
    • /
    • 1997
  • We performed 1st day Tc-99m-sestamibi gated SPECT with dipyridamole/rest T1-201 SPECT and 2nd day 24 hour delay T1-201 SPECT/rest Tc-99m-sestamibi gated SPECT in 27 patients with coronary artery disease(24) or having chest pain(3). Stress and rest Tc-99m-sestamibi gated SPECT was acquired at 60min post-injection. A 4-point scoring system(0 to 3 for normal to absent tracer uptake) for 17 segments was used. Wall motion was scored on another 4 point scale(0 to 3 for normal to dyskinesia) in the 1st day post-stress gated and the 2nd day rest gated SPECT. Post-stress gated SPECT showed wall motion abnormality in 94 segments(20%). Fifty-five segments among these 94 showed the same wall motion between post-stress and rest gated SPECT: i.e. 1-1 23 segments, 2-2: 29 segments, 3-3: 3 segments. Remaining 39 segments(41.5%) showed different wall motion between post- stress and rest Tc-99m-sestamibi gated SPECT. Twenty one segments with wall motion abnormality had normal perfusion(rest : 15 segments, 24 hour delay: 6 segments) at either rest or 24 hour delay. Fifteen among these 21 segments showed persistent post-stress and the 2nd day rest wall motion abnormality(persistent stunning). However, in 6 segments with pro-longed (1 hour after stress) stunning, abnormal wall motion did improve in the 2nd day rest Tc-99m-sestamibi gated SPECT(transient prolonged stunning). These 6 segments had normal perfusion at rest(n=4) or at 24 hour delay(n=2). Post stress wall motions showed significantly higher scores in persistent stunning than in prolonged transient stunning(P value<0.05). It was concluded that we could find stunned myocardium with gated Tc-99m-sestamibi SPECT at either post-stress or rest and that some myocardial walls of post-stress 1 hour gated SPECT did not show truly rest wall motion. So, we should be cautious if we use post-stress Tc-99m-sestamibi wall motion to assess rest wall motion.

  • PDF

Estimation of residual stress in dissimilar metals welding using deep fuzzy neural networks with rule-dropout

  • Ji Hun Park;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • 제56권10호
    • /
    • pp.4149-4157
    • /
    • 2024
  • Welding processes are used to connect several components in nuclear power plants. These welding processes can induce residual stress in welding joints, which has been identified as a significant factor in primary water stress corrosion cracking. Consequently, the assessment of welding residual stress plays a crucial role in determining the structural integrity of welded joints. In this study, a deep fuzzy neural networks (DFNN) with a rule-dropout method, which is an artificial intelligence (AI) method, was used to predict the residual stress of dissimilar metal welding. ABAQUS, a finite element analysis program, was used as the data collection tool to develop the AI model, and 6300 data instances were collected under 150 analysis conditions. A rule-dropout method and genetic algorithm were used to optimize the estimation performance of the DFNN model. DFNN with the rule-dropout model was compared to a deep neural network method, known as a general deep learning method, to evaluate the estimation performance of DFNN. In addition, a fuzzy neural network method and a cascaded support vector regression method conducted in previous studies were compared. Consequently, the estimation performance of the DFNN with the rule-dropout model was better than those of the comparison methods. The welding residual stress estimation results of this study are expected to contribute to the evaluation of the structural integrity of welded joints.

Deterministic Fracture Mechanics Analysis of Pressurized Thermal Shock

  • M. J. Jhung;Park, Y. W.
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.470-484
    • /
    • 1998
  • An analysis program for the evaluation of pressure vessel integrity under pressurized thermal shock (PTS) is developed. For given material properties and transient history such as temperature and pressure, the stress distribution is calculated and then stress intensity factors are obtained for a wide range of crack sizes. The stress intensity factors are compared with the fracture toughness to check if cracking is expected to occur during the transient. Using this program a round robin problem of PTS during a small break loss of coolant transient has been analyzed as a part of the international comparative assessment study. The allowable maximum reference nil-ductility transition temperatures are determined for various crack sizes.

  • PDF

기계적 응력이완 방법에 의한 원전기기 용접부의 잔류응력 재분포 (Residual Stress Redistribution on Welds of Nuclear Component by Mechanical Stress Relieving Methods)

  • 이세환;김종성;진태은
    • Journal of Welding and Joining
    • /
    • 제22권2호
    • /
    • pp.51-58
    • /
    • 2004
  • Residual stresses, which can be produced during the welding process, play an important role in an industrial field. Welding residual stresses are exerting negative effect on the fatigue behavior and integrity of structure. In this study, as a result of the thermal elasto-plastic finite element analysis for the welds of a nuclear component, the residual stress distributions are estimated for as-welded condition. Also, finite element techniques are developed to simulate the relaxation of the residual stresses according to the various mechanical stress relieving(MSR) loads such as hydrostatic pressure loading, tensile pipe-end loading, and mechanical stress improvement process(MSIP) loading. Finally, the results of residual stress redistributions for various loading conditions are compared and reviewed qualitatively and quantitatively to find an optimum loading condition.

Factors Affecting Stress Corrosion Cracking Susceptibility of Alloy 600 MA Steam Generator Tubes

  • Kang, Yong Seok;Lee, Kuk Hee;Shin, Dong Man
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.22-25
    • /
    • 2021
  • In the past, Alloy 600 nickel-based alloys have been widely used in steam generators. However, most of them have been replaced by thermally treated alloy 690 tubes in recent years because mill annealed alloy 600 materials are known to be susceptible to stress corrosion cracking. Unlike this general perception, some steam generators using mill annealed alloy 600 tubes show excellent performance even though they are designed, manufactured, and operated in the same way. Therefore, various analyses were carried out to determine causes for the degradation of steam generators. Based on the general stress corrosion cracking mechanism, tube material susceptibility, residual stress, and sludge deposits of steam generators were compared to identify factors affecting stress corrosion cracking. It was found that mill annealed alloy 600 steam generator tubes showed higher resistance to stress corrosion cracking when the amount of sludge deposits on tube surface was smaller and residual stress generated during the fabrication was lower.