• Title/Summary/Keyword: nuclear protein

Search Result 1,678, Processing Time 0.03 seconds

Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Activates Pro-Survival Signaling Pathways, Nuclear Factor-${\kappa}B$ and Extracellular Signal-Regulated Kinase 1/2 in Trophoblast Cell Line, JEG-3

  • Ka Hakhyun
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a well-known inducer of apoptotic cell death in many tumor cells. 1RAIL is expressed in human placenta, and cytotrophoblast cells express 1RAIL receptors. However, the role of TRAIL in human placentas and cytotrophoblast cells is not. well understood. In this study a trophoblast cell line, JEG-3, was used as a model system to examine the effect of TRAIL. on key intracellular signaling pathways involved in the control of trophoblastic cell apoptosis and survival JEG-3 cells expressed receptors for 1RAIL, death receptor (DR) 4, DR5, decoy receptor (OcR) 1 and DeR2. Recombinant human TRAIL (rhTRAIL) did not have a cytotoxic effect determined by MIT assay and did not induce apoptotic cell death determined by poly-(ADP-ribose) polymerase cleavage assay. rhTRAIL induced a rapid and transient nuclear translocation of nuclear $factor-{\kappa}B(NF-{\kappa}B)$ determined by immunoblotting using nuclear protein extracts. rhTRAIL rapidly activated extracellular signal-regulated protein kinase (ERK) 1/2 as determined by immnoblotting for phospho-ERK1/2. However, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK) and Akt (protein kinase B) were not activated by rhTRAIL. The ability of 1RAIL to induce $NF-{\kappa}B$ and ERK1/2 suggests that interaction between TRAIL and its receptors may play an important role in trophoblast cell function during pregnancy.

L-ascorbic acid induces apoptosis in human laryngeal epidermoid Hep-2 cells by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase/Akt signaling pathway

  • Park, Jung-Sun;Kim, Yoon-Jung;Park, Sam Young;Chung, Kyung-Yi;Oh, Sang-Jin;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.169-178
    • /
    • 2020
  • L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl-2 family and MAPK/Akt signaling pathways.

Nuclear localization of Obox4 is dependent on its homeobox domain

  • Park, Geon Tae;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Objective: Oocyte-specific homeobox 4 (Obox4) is preferentially expressed in oocytes and plays an important role in the completion of meiosis of oocytes. However, the Obox4 expression pattern has not been reported yet. In this study, we investigated the subcellular localization of Obox4 using a green fluorescent protein (GFP) fusion expression system. Methods: Three regions of Obox4 were divided and fused to the GFP expression vector. The partly deleted homeodomain (HD) regions of Obox4 were also fused to the GFP expression vector. The recombinant vectors were transfected into HEK-293T cells plated onto coated glass coverslips. The transfected cells were stained with 4',6-diamidino-2-phenylindol and photographed using a fluorescence microscope. Results: Mutants containing the HD region as well as full-length Obox4 were clearly localized to the nucleus. In contrast, the other mutants of either the N-terminal or C-terminal region without HD had impaired nuclear localization. We also found that the N-terminal and C-terminal of the Obox HD contributed to nuclear localization and the entire HD was necessary for nuclear localization of Obox4. Conclusion: Based on the results of the present study, we demonstrated that the intact HD region of Obox4 is responsible for the nuclear localization of Obox4 protein in cells.

Correlations Between Expression of Cyclin B1 Levels and Development of Reconstructed Mouse Embryos

  • Hwang, Seong-Soo;Kim, Chang-Kun;Chung, Young-Chai
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.115-115
    • /
    • 2002
  • To evaluate the correlations between the expression of cyclin B1 mRNA and protein after stimulation and oocyte activation and development of nuclear transferred mouse embryos, this study was performed. The oocyte activation was induced by 7% ethanol or 10$\mu\textrm{g}$/$m\ell$ Ca-ionophore without (single) or with (combined) 10$\mu\textrm{g}$/$m\ell$ cycloheximide (CH). Cyclin B1 mRNA and protein in mouse oocytes was evaluated by PCR and western blot. The activation and blastocyst development in both single (P<0.05) and combined (P<0.01) stimulation was higher than in non-activated group. The cyclin B1 mRNA and protein levels were significantly reduced in both single and combined stimulation groups (P<0.05), respectively. Cyclin B1 mRNA expression showed a negative correlation between activation and blastocyst development in both single and combined stimulation groups. And also the expression of cyclin B1 protein showed a negative correlation with between oocyte activation and blastocysts development in both single and combined stimulation groups. In conclusion, it may suggest that single and combined stimulation increases the oocyte activation and blastocyst development of nuclear transferred embryos, because it induces the degradation of cyclin B1 mRNA and protein after activation in enucleated mouse oocytes.

  • PDF

A Benzylideneacetophenone Derivative Induces Apoptosis of Radiation-Resistant Human Breast Cancer Cells via Oxidative Stress

  • Park, Jeong Eon;Piao, Mei Jing;Kang, Kyoung Ah;Shilnikova, Kristina;Hyun, Yu Jae;Oh, Sei Kwan;Jeong, Yong Joo;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.404-410
    • /
    • 2017
  • Benzylideneacetophenone derivative (1E)-1-(4-hydroxy-3-methoxyphenyl) hept-1-en-3-one (JC3) elicited cytotoxic effects on MDA-MB 231 human breast cancer cells-radiation resistant cells (MDA-MB 231-RR), in a dose-dependent manner, with an $IC_{50}$ value of $6{\mu}M$ JC3. JC3-mediated apoptosis was confirmed by increase in sub-G1 cell population. JC3 disrupted the mitochondrial membrane potential, and reduced expression of anti-apoptotic B cell lymphoma-2 protein, whereas it increased expression of pro-apoptotic Bcl-2-associated X protein, leading to the cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In addition, JC3 activated mitogen-activated protein kinases, and specific inhibitors of these kinases abrogated the JC3-induced increase in apoptotic bodies. JC3 increased the level of intracellular reactive oxygen species and enhanced oxidative macromolecular damage via lipid peroxidation, protein carbonylation, and DNA strand breakage. Considering these findings, JC3 is an effective therapy against radiation-resistant human breast cancer cells.

Treatment of Epidermal Growth Factor (EGF) enhances Nuclear Maturation of Porcine Oocytes and Stimulates Expression of ER/Golgi Transport Proteins

  • Hwangbo, Yong;Oh, Hae-In;Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.131-138
    • /
    • 2017
  • This study was conducted to investigate stimulatory effect of epidermal growth factor (EGF) on nuclear maturation and the expression level of EGF-receptor (EGFR), GM-130 (a marker of Golgi apparatus), transport protein Sec61 subunit beta ($Sec61{\beta}$), and coatomer protein complex subunit gamma 2 (COPG2) in porcine oocytes. The cumulus-oocyte complexes were collected from follicle with 3-6 mm in diameter. They were incubated in medium with/without EGF for 22 h (IVM I) and subsequently incubated hormone-free medium with/without EGF for 22 h (IVM II). Nuclear maturation state was checked by aceto-orcein stain. Protein expression of EGFR, GM-130, $Sec61{\beta}$, and COPG2 were measured by immunofluorescence. In results, nuclear maturation of oocytes in EGF non-treated oocytes were significantly lower than EGF-treated groups at IVM I or IVM II stage (P<0.05), whereas maturational rate in EGF treatment groups at both of IVM stage was higher in among the all treatment groups (P<0.05). EGFR, GM-130, $Sec61{\beta}$ and COPG2 were expressed in the cytoplasm of oocytes. Especially, GM-130 and EGFR were strongly expressed, but $Sec61{\beta}$ and COPG2 were weakly expressed in cortical area of cytoplasm. The protein level of GM-130, $Sec61{\beta}$, and COPG2 were significantly higher in the EGF-treated groups (P<0.05). However EGFR was no difference between non EGF-treated groups and control. In conclusion, EGF plays an important role in the systems for oocyte maturation with endoplasmic reticulum and Golgi apparatus. In addition, the protein levels of $Sec61{\beta}$ and COPG2 could be changed by EGF in the porcine oocytes during maturation.

Effects of Proto-oncogene Protein DEK on PCAF Localization

  • Lee, In-Seon;Lee, Seok-Cheol;Lee, Jae-Hwi;Seo, Sang-Beom
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.78-82
    • /
    • 2007
  • The proto-oncogene protein DEK is a nuclear binding phosphoprotein that has been associated with various human diseases including leukemia. Histone acetylation is an important post-translational modification which plays important role in transcriptional regulation. Auto-acetylation of histone acetyltransferase PCAF results in increment of its HAT activity and facilitation of its nuclear localization. In this study, we report that DEK inhibits PCAF auto-acetylation through direct interaction. The C-terminal acidic domains of DEK are responsible for the interaction with PCAF. Using confocal microscopy, we have shown that nuclear localization of PCAF is severely inhibited by DEK. Taken together, our results suggest that DEK may be involved in various cellular signal transduction pathways accommodated by PCAF through the regulation of PCAF auto-acetylation.

BINDING OF LEAF NUCLEAR PROTEIN EXTRACTS TO LIGHT-RESPONSIVIE ELEMENTS OF cab PROMOTERS OF Arabidopsis thaliana

  • Lee, Hwa-Hyung;Park, Hee-Jin
    • Journal of Photoscience
    • /
    • v.3 no.2
    • /
    • pp.85-90
    • /
    • 1996
  • The binding ability of leaf nuclear extracts to the lighbresponsive elements (LREs) of cab promoters of Arabidopsis thaliana has been investigated. The cab promoters were fragmented with restr ction endonucleases into LRE that were identified by Mitra et al. [Plant Mol. Biol. 12, 169179 ( 1989)] and other small fragments. After end labeling with Klenow fragment, the fragments were assayed for binding with the leaf nuclear proteins that were prepared by solubilizing the purified nuclei with 0.5 M ammonium sulfate. The binding ability was assayed by mobility shift assay. To perform successful mobility shift assay, several factors affecting the interaction of protein with DNA were optimized before performing the assay. The LREs had several retardation bands. However, the other promoter fragments from the transcription start site to the far upstream region of the promoters had also retardation bands. No particular relationships could be found between the retardation band distributions and the loci of LRE. It is likely that the light-regulation of cab gene expression may be controlled by the multiple interactions of the regulatory protein factors with DNA motifs.

  • PDF

The changes in the Amounts of SH Compounds in Chlorella during the Synchronous Culture (Chlorella의 생활사를 통한 -SH화합물 함량의 변화)

  • 최호형;이영녹
    • Korean Journal of Microbiology
    • /
    • v.19 no.1
    • /
    • pp.8-13
    • /
    • 1981
  • The content of sulfhydryl compounds in Chlorella cells during the life cycle in the synchronous culture is determined spectrophotomatically at 250nm(pH7.0) using p-CMB as SH-reagent. The changes in the content of-SHl compounds and protein in Chlorella cells is measured during the life cycle in connection with cell division and analyzed. 1) The amounts of total ninhydrin reactive substance increased with growth of cells but increased the more at the $L_4$ stage(cytokinesis stage) than at the $L_2$ stage (nuclear division stage). 2) The sulfhydryl content of Chlorella cells increased strikingly at the $L_2$ stage and decreased markedly at the $L_4$ stage. 3) The amounts of values -SH/protein showed a peak at the $L_2$ stage. The increase of the amount of total-SH compounds of cells during the nuclear division period was considered to be caused by the weighty roles of protein-SH groups for the formation of nuclear division apparatus and for the enzyme activity.

  • PDF

Dose absorption of Omicron variant SARS-CoV-2 by electron radiation: Using Geant4-DNA toolkit

  • Mehrdad Jalili Torkamani;Chiman Karami;Pooneh Sayyah-Koohi;Farhood Ziaie;Seyyedsina Moosavi;Farhad Zolfagharpour
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2421-2427
    • /
    • 2024
  • In this research, the Omicron variant of the SARS-CoV-2 virus was simulated and exposed to electron radiation with up to 20 keV energy. Absorbed energy was measured for spike protein, nucleocapsid protein, and envelope of the virus. Simulations were performed by Geant4-DNA in a water environment at temperature of 20 ℃ and pressure of 1 atm. Since the viral RNA is kept inside the nucleocapsid protein, damage to this area could destroy the viral RNA strand and create an inactive virus. Our findings showed that electron beams with an energy of 2.5 keV could cause a maximum absorption dose and consequently maximum damage to the nucleocapsid and effectively be used for inactivation virus.