• Title/Summary/Keyword: nuclear proliferation

Search Result 498, Processing Time 0.029 seconds

An investigative study of enrichment reduction impact on the neutron flux in the in-core flux-trap facility of MTR research reactors

  • Xoubi, Ned;Darda, Sharif Abu;Soliman, Abdelfattah Y.;Abulfaraj, Tareq
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.469-476
    • /
    • 2020
  • Research reactors in-core experimental facilities are designed to provide the highest steady state flux for user's irradiation requirements. However, fuel conversion from highly enriched uranium (HEU) to low enriched uranium (LEU) driven by the ongoing effort to diminish proliferation risk, will impact reactor physics parameters. Preserving the reactor capability to produce the needed flux to perform its intended research functions, determines the conversion feasibility. This study investigates the neutron flux in the central experimental facility of two material test reactors (MTR), the IAEA generic10 MW benchmark reactor and the 22 MW s Egyptian Test and Research Reactor (ETRR-2). A 3D full core model with three uranium enrichment of 93%, 45%, and 20% was constructed utilizing the OpenMC particle transport Monte Carlo code. Neutronics calculations were performed for fresh fuel, the beginning of life cycle (BOL) and end of life cycle (EOL) for each of the three enrichments for both the IAEA 10 MW generic reactor and core 1/98 of the ETRR-2 reactor. Criticality calculations of the effective multiplication factor (Keff) were executed for each of the twelve cases; results show a reasonable agreement with published benchmark values for both reactors. The thermal, epithermal and fast neutron fluxes were tallied across the core, utilizing the mesh tally capability of the code and are presented here. The axial flux in the central experimental facility was tallied at 1 cm intervals, for each of the cases; results for IAEA 10 MW show a maximum reduction of 14.32% in the thermal flux of LEU to that of the HEU, at EOL. The reduction of the thermal flux for fresh fuel was between 5.81% and 9.62%, with an average drop of 8.1%. At the BOL the thermal flux showed a larger reduction range of 6.92%-13.58% with an average drop of 10.73%. Furthermore, the fission reaction rate was calculated, results showed an increase in the peak fission rate of the LEU case compared to the HEU case. Results for the ETRR-2 reactor show an average increase of 62.31% in the thermal flux of LEU to that of the HEU due to the effect of spectrum hardening. The fission rate density increased with enrichment, resulting in 34% maximum increase in the HEU case compared to the LEU case at the assemblies surrounding the flux trap.

Immunohistochemical Study of Steroidogenesis, Proliferation, and Hypoxia-related Proteins in Caprine Corpora Lutea during the Estrous Cycle

  • Chiu, C.H.;Srinivasan, R.;Tseng, T.H.;Chuang, R.F.;Wu, L.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.636-642
    • /
    • 2009
  • The corpus luteum (CL) is a transient endocrine gland that produces progesterone, a product required for the establishment and maintenance of pregnancy. In the absence of pregnancy, the production of progesterone in the CL decreases and the structure itself regresses in size. The life span and function of the CL are regulated by complex interactions between stimulatory (luteotrophic) and inhibitory (luteolytic) mediators. When an ovum is released from a mature follicle, angiogenesis and rapid growth of follicular cells form the CL. The purpose of the present study was to determine whether steroidogenesis, proliferation, and hypoxiarelated proteins are expressed in caprine CL. The expression of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor $1{\alpha}$ (HIF-$1{\alpha}$) were determined in caprine CL during the estrous cycle. Cytochrome P450 side chain cleavage protein did not vary significantly during the estrous cycle; however, there was an increased expression of $3{\beta}$ -hydroxysteroid dehydrogenase in the early and middle stages, which rapidly decreased in the late stage. The same observations were made with respect to steroidogenic acute regulatory protein. Variations in progesterone content and expression of PCNA, HIF-$1{\alpha}$, and VEGF were consistent with this result. Thus, the steroidogenic proteins, PCNA, HIF-$1{\alpha}$, and VEGF in caprine CL are dependent on the stage of the estrous cycle.

Anticancer Activity of the Branch Extracts from Vaccinium oldhamii through Cyclin D1 Proteasomal Degradation in Human Cancer Cells

  • Park, Su Bin;Kim, Ha Na;Park, Gwang Hun;Son, Ho-Jun;Eo, Hyun Ji;Song, Jeong Ho;Song, Hun Min;Park, Ji Ae;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.31 no.3
    • /
    • pp.218-227
    • /
    • 2018
  • In this study, we investigated the effect of the extracts from Vaccinium oldhamii on cell proliferation and the regulatory mechanisms of cyclin D1 protein level in human cancer cells. The branch extracts from Vaccinium oldhamii (VOB) showed higher inhibitor effect against the cell growth than leave extracts (VOL) and fruit extracts (VOF) in human colorectal cancer, breast cancer, prostate cancer, non-small lung cancer, pancreatic cancer and liver cancer cells. In addition, VOB decreased cyclin D1 level at both protein and mRNA level. MG132 treatment attenuated VOB-mediated cyclin D1 downregulation. A point mutation of threonine-286 to alanine attenuated cyclin D1 degradation by VOB. In addition, the inhibition of nuclear export by leptomycin B (LMB) attenuated cyclin D1 degradation by VOB. But, the treatment of PD98059 (ERK1/2 inhibitor), SB203580 (p38 inhibitor), SP600125 (JNK inhibitor), LiCl ($GSK3{\beta}$ inhibitor), LY294002 (PI3K inhibitor) or BAY 11-7082 ($I{\kappa}K$ inhibitor) did not affect VOB-induced cyclin D1 degradation. In conclusion, VOB induced cyclin D1 degradation through redistribution of cyclin D1 from the nucleus to cytoplasm via T286 phosphorylation of cyclin D1, which resulted in the inhibition of cancer cell proliferation.

Taxol-Induced Apoptosis and Nuclear Translocation of Mitogen-Activated Protein (MAP) Kinase in HeLa Cells

  • Kim, Sung-Su;Kim, Yoon-Suk;Jung, Yon-Woo;Choi, Hyun-Il;Shim, Moon-Jeong;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.379-384
    • /
    • 1999
  • Taxol, a natural product with significant anti-tumor activity, stabilizes microtubules and arrests cells in the G2/M phase of the cell cycle. It has been reported that taxol has additional effects on the cell such as an increase in tyrosine phosphorylation of proteins and activation of mitogen-activated protein (MAP) kinase. This phosphorylated kinase translocates into the nucleus and phosphorylates its substrate c-jun, c-fos, ATF2, and ATF3. The MAP kinase family is comprised of key regulatory proteins that control the cellular response to both proliferation and stress signals. First examination was cytotoxicity and apoptosis-induced concentration with paclitaxel in HeLa cell. A half-maximal inhibition of cell proliferation ($IC_{50}$) occurred at 13 nM paclitaxel. When DNA fragmentation was analyzed by agarose gel electrophoresis, a nucleosomal ladder became evident 24 h after a taxol (50 nM) addition to the cells. In addition, an apoptotic body was detected by electron microscopy. Taxol-treated cells were arrested at the S phase at 10 nM. Treatment of 50 nM taxol activated the extracellular signal-regulated protein kinase (ERK1), and a fraction of the activated MAP kinases entered the nucleus. It was also discovered that nucleus substrates c-jun was phosphorylated and activated in the cell. The activated ERK1 could subsequently translocate into the nucleus and phosphorylate its substrate c-jun as well. This study suggests that taxol-induced apoptosis might be related with signal transduction via MAP kinases.

  • PDF

Effects of Electrical Stimulation on Wound Healing and Skin Mast Cells in Streptozotocin-Induced Diabetic Rats (스트렙토조토신 유도 당뇨 흰쥐에서 전기자극이 상처치유와 피부 비만세포에 미치는 영향)

  • Jekal, Seung-Joo;Lee, Kyung-Sun;Chung, Ok-Bong;Lee, Jae-Hyoung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.40 no.2
    • /
    • pp.118-128
    • /
    • 2008
  • The aim of this study was to investigate the effect of electrical stimulation on healing of impaired wound and alteration of mast cells in experimental diabetic rats. Thirty male Sprague-Dawley rats were divided into three groups : incision (control), diabetes+incision (diabetes) and diabetes + incision + electrical stimulation (D/ES). Diabetes was induced in rats by streptozotocin (STZ) injection (60 mg/kg, one time) and 20 mm length incision wounds were created on the back after shaving hair. The electrical stimulation rats were treated with a current intensity of 30~50 V at 120 pps and $140{\mu}s$ for 10 days from 3 days after STZ injection. The lesion and adjacent skin tissues were fixed with 10% buffered formalin, embedded with paraffin. For wound healing analysis, hematoxylin-eosin (HE) and picrosirius red staining were performed. Mast cells (MC) were stained with toluidine blue (pH 0.5) and quantified at ${\times}200$ using a light microscope. The density of keratinocyte proliferation and microvessels in skin tissues were analyzed using a computerized image analysis system on sections immunostained with proliferative cell nuclear antigen (PCNA) and ${\alpha}$-smooth muscle actin (${\alpha}$-SMA), respectively. The results showed that the wound healing rate, collagen density and neoepidermis thickness, density of PCNA-positive cells and density of ${\alpha}$-SMA-positive vessels were significantly higher in D/ES rats than in diabetic rats. The density of MCs and degranulated MCs in D/ES rats were also significantly higher than those in diabetic rats. These findings suggest that the electrical stimulation may promote the tissue repair process by accelerating collagen production, keratinocyte proliferation and angiogenesis in the diabetic rats, and MCs are required for wound healing of skin in rats.

  • PDF

The Role of Gastrokine 1 in Gastric Cancer

  • Yoon, Jung Hwan;Choi, Won Suk;Kim, Olga;Park, Won Sang
    • Journal of Gastric Cancer
    • /
    • v.14 no.3
    • /
    • pp.147-155
    • /
    • 2014
  • Homeostatic imbalance between cell proliferation and death in gastric mucosal epithelia may lead to gastritis and gastric cancer. Despite abundant gastrokine 1 (GKN1) expression in the normal stomach, the loss of GKN1 expression is frequently detected in gastric mucosa infected with Helicobacter pylori, as well as in intestinal metaplasia and gastric cancer tissues, suggesting that GKN1 plays an important role in gastric mucosal defense, and the gene functions as a gastric tumor suppressor. In the stomach, GKN1 is involved in gastric mucosal inflammation by regulating cytokine production, the nuclear factor-${\kappa}B$ signaling pathway, and cyclooxygenase-2 expression. GKN1 also inhibits the carcinogenic potential of H. pylori protein CagA by binding to it, and up-regulates antioxidant enzymes. In addition, GKN1 reduces cell viability, proliferation, and colony formation by inhibiting cell cycle progression and epigenetic modification by down-regulating the expression levels of DNMT1 and EZH2, and DNMT1 activity, and inducing apoptosis through the death receptor-dependent pathway. Furthermore, GKN1 also inhibits gastric cancer cell invasion and metastasis via coordinated regulation of epithelial mesenchymal transition-related protein expression, reactive oxygen species production, and PI3K/Akt signaling pathway activation. Although the modes of action of GKN1 have not been clearly described, recent limited evidence suggests that GKN1 acts as a gastricspecific tumor suppressor. This review aims to discuss, comment, and summarize the recent progress in the understanding of the role of GKN1 in gastric cancer development and progression.

The Role of Autonomous Wntless in Odontoblastic Differentiation of Mouse Dental Pulp Cells

  • Choi, Hwajung;Kim, Tak-Heun;Ko, Seung-O;Cho, Eui-Sic
    • Journal of Korean Dental Science
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • Purpose: Wnt signaling plays an essential role in the dental epithelium and mesenchyme during tooth morphogenesis. Deletion of the Wntless (Wls) gene in odontoblasts appears to reduce canonical Wnt activity, leading to inhibition of odontoblast maturation. However, it remains unclear if autonomous Wnt ligands are necessary for differentiation of dental pulp cells into odontoblast-like cells to induce reparative dentinogenesis, one of well-known feature of pulp repair to form tertiary dentin. Materials and Methods: To analyze the autonomous role of Wls for differentiation of dental pulp cells into odontoblast-like cells, we used primary dental pulp cells from unerupted molars of Wls-floxed allele mouse after infection with adenovirus for Cre recombinase expression to knockout the floxed Wls gene or control GFP expression. The differentiation of dental pulp cells into odontoblast-like cells was analyzed by quantitative real-time polymerase chain reaction. Result: Proliferation rate was significantly decreased in dental pulp cells with Cre expression for Wls knockout. The expression levels of Osterix (Osx), runt-related transcription factor 2 (Runx2), and nuclear factor I-C (Nfic) were all significantly decreased by 0.3-fold, 0.2-fold, and 0.3-fold respectively in dental pulp cells with Wls knockout. In addition, the expression levels of Bsp, Col1a1, Opn, and Alpl were significantly decreased by 0.7-fold, 0.3-fold, 0.8-fold, and 0.6-fold respectively in dental pulp cells with Wls knockout. Conclusion: Wnt ligands produced autonomously are necessary for proper proliferation and odontoblastic differentiation of mouse dental pulp cells toward further tertiary dentinogenesis.

Effect of 630 nm Light Emitting Diode (LED) Irradiation on Wound Healing in Streptozotocin-Induced Diabetic Rats

  • JeKal, Seung-Joo;Kwon, Pil-Seung;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.365-376
    • /
    • 2010
  • The purpose of this study was to clarify the effect of light emitting diode (LED) irradiation on healing of impaired wound and alteration of mast cells in experimental diabetic rats. Twenty-four male Sprague-Dawley rats were divided into four groups: excision (Ex), excision-LED irradiation (Ex-LED), diabetes + excision (DM) and diabetes + excision + LED irradiation (DM-LED). Diabetes was induced in rats by streptozotocin (STZ) injection (70 mg/kg, single dose) and 6 mm punch excision wounds were created on the back after shaving hair. The LED-irradiated rats were treated to a daily dose of $5\;J/cm^2$ LED (630 nm) light for 11 days after surgery, and were killed at day 1, 3, 7 and 11. The lesion and adjacent skin tissues were excised, fixed with 10% buffered formalin and embedded with paraffin. For evaluation of wound healing, hematoxylin-eosin (HE) and Masson trichrome staining were performed. Mast cells (MCs) were stained with toluidine blue (pH 0.5) and quantified using a computerized image analysis system. The proliferation activity of keratinocyte in skin tissues was analyzed on sections immunostained with proliferative cell nuclear antigen (PCNA). The results showed that wound healing rate, collagen density and neo-epidermis length, number of PCNA-positive cells, fibroblasts and mast cells were significantly higher in the LED-irradiated rats than in the DM and Ex rats throughout the periods of experiment. Exceptionally, the number of MCs was significantly lower at day 11 compared with day 7 after surgery in the all groups. These findings suggest that the LED irradiation may promote the tissue repair process by accelerating keratinocyte and fibroblast proliferation and collagen production in normal rats as well as in diabetic rats, and MCs may play an important role at an early stage of skin wound healing in normal and diabetic rats.

630 nm Light Emitting Diode Irradiation Improves Dermal Wound Healing in Rats

  • Lee, Jae-Hyoung;Jekal, Seung-Joo;Kwon, Pil-Seung
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.3
    • /
    • pp.140-146
    • /
    • 2015
  • Purpose: To determine the effects of 630 nm light emitting diode (LED) on full-thickness wound healing. Methods: Twelve male Sprague-Dawley rats were randomly divided into LED (n=6) and control group (n=6). Two $19.63mm^2$ wounds were created on the mid dorsum. LED group received a 630 nm LED irradiation with $3.67mW/cm^2$ for 30 minutes ($6.60J/cm^2$) for 7 days, while control group received sham LED irradiation. Epithelial gap, collagen density, ${\alpha}$-SMA fibroblast and PCNA keratinocyte were measured on histochemical and immunohistochemical staining using image analysis system. An independent t-test was conducted to compare the difference between groups. Results: The wound closure rate, collagen density, ${\alpha}$-SMA fibroblast number, epithelial gap and PCNA keratinocyte number have shown no significant difference between LED and control group at day 3 after the treatment. At day 7 after the treatment, the wound closure rate in LED group was increased when compared with control group (p<0.05). The collagen density (p<0.05) and ${\alpha}$-SMA immunoreactive fibroblast number (p<0.001) were increased when compared with control group at day 7. The epithelial gap in LED group was significantly shorten than control group at day 7 (p<0.01). The PCNA positive cell number in LED group was higher than control group at day 7 (p<0.01). Conclusion: 630 nm LED with $3.67mW/cm^2$, $6.60J/cm^2$ accelerate collagen deposition by stimulating fibroblasts, and enhance wound contraction by differentiating myofibroblasts in the dermis, and accelerate keratinocyte proliferation by facilitating DNA synthesis in the epidermis. It may promote the healing process in proliferation stage of wound healing.

Autophagy Inhibition Promotes Gambogic Acid-induced Suppression of Growth and Apoptosis in Glioblastoma Cells

  • Luo, Guo-Xuan;Cai, Jun;Lin, Jing-Zhi;Luo, Wei-Shi;Luo, Heng-Shan;Jiang, Yu-Yang;Zhang, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6211-6216
    • /
    • 2012
  • Objective: To investigate the effects of gambogic acid (GA) on the growth of human malignant glioma cells. Methods: U251MG and U87MG human glioma cell lines were treated with GA and growth and proliferation were investigated by MTT and colony formation assays. Cell apoptosis was analyzed by annexin V FITC/PI flow cytometry, mitochondrial membrane potential assays and DAPI nuclear staining. Monodansylcadaverine (MDC) staining and GFP-LC3 localisation were used to detect autophagy. Western blotting was used to investigate the molecular changes that occurred in the course of GA treatment. Results: GA treatment significantly suppressed cell proliferation and colony formation, induced apoptosis in U251 and U87MG glioblastoma cells in a time- and dose-dependent manner. GA treatment also lead to the accumulation of monodansylcadaverine (MDC) in autophagic vacuoles, upregulated expressions of Atg5, Beclin 1 and LC3-II, and the increase of punctate fluorescent signals in glioblastoma cells pre-transfected with GFP-tagged LC3 plasmid. After the combination treatment of autophagy inhitors and GA, GA mediated growth inhibition and apoptotic cell death was further potentiated. Conclusion: Our results suggested that autophagic responses play roles as a self-protective mechanism in GA-treated glioblastoma cells, and autophagy inhibition could be a novel adjunctive strategy for enhancing chemotherapeutic effect of GA as an anti-malignant glioma agent.