Taxol-Induced Apoptosis and Nuclear Translocation of Mitogen-Activated Protein (MAP) Kinase in HeLa Cells

Sung Su Kim, Yoon Suk Kim, Yon Woo Jung, Hyun il Choi, Moon Jeong Shim and Tae Ue Kim*
Department of Medical Technology, College of Health Science, Yonsei University, Wonju 220-710, Korea

Received 22 March 1999, Accepted 6 May 1999

Abstract

Taxol, a natural product with significant anti-tumor activity, stabilizes microtubules and arrests cells in the G2/M phase of the cell cycle. It has been reported that taxol has additional effects on the cell such as an increase in tyrosine phosphorylation of proteins and activation of mitogen-activated protein (MAP) kinase. This phosphorylated kinase translocates into the nucleus and phosphorylates its substrate c-jun, c-fos, ATF2, and ATF3. The MAP kinase family is comprised of key regulatory proteins that control the cellular response to both proliferation and stress signals. First examination was cytotoxicity and apoptosis-induced concentration with paclitaxel in HeLa cell. A halfmaximal inhibition of cell proliferation ($\mathbf{I C}_{50}$) occurred at 13 nM paclitaxel. When DNA fragmentation was analyzed by agarose gel electrophoresis, a nucleosomal ladder became evident 24 h after a taxol ($\mathbf{5 0} \mathbf{n M}$) addition to the cells. In addition, an apoptotic body was detected by electron microscopy. Taxol-treated cells were arrested at the S phase at 10 nM . Treatment of 50 nM taxol activated the extracellular signal-regulated protein kinase (ERK1), and a fraction of the activated MAP kinases entered the nucleus. It was also discovered that nucleus substrates c-jun was phosphorylated and activated in the cell. The activated ERK1 could subsequently translocate into the nucleus and phosphorylate its substrate c-jun as well. This study suggests that taxol-induced apoptosis might be related with signal transduction via MAP kinases.

Keywords: Anti-tumor activity, c-jun, DNA fragmentation, MAP kinase, Taxol.

[^0]
Introduction

Paclitaxel (taxol) is a potent anti-tumor drug that is remarkably effective against advanced ovarian carcinoma and breast carcinoma, and it shows promising activity against other types of tumors (Rowinsky and Donehower, 1995). Taxol inhibits cell proliferation and induces cell death (Schiff and Horwitz, 1980; Jordan et al., 1993; Bhalla et al., 1993; Lopes et al., 1993; Donaldson et al., 1994; Liebmann et al., 1994; Long and Fairchild, 1994; Milas et al., 1995). It appears to act by slowing or blocking progression through mitosis (Fuchs and Johnson, 1978; Jordan et al., 1993; Liebmann et al., 1994; Long and Fairchild, 1994; Rieder et al., 1994). Substoichiometric binding of taxol to reassembled microtubules potently stabilizes microtubule dynamics (Derry et al., 1995). Previous reviews (Wyllie et al., 1980; Sen and D'Incalci, 1992; Fisher 1994) have summarized the evidence that cancer chemotherapeutic agents including taxol induced programmed cell death. Prolonged exposure of cells to a low concentration of taxol induces DNA fragmentation, which is characteristic of apoptosis, and it ultimately leads to programmed cell death (Liu et cl., 1994). Apoptosis begins with condensation of nuclear chromatin at the nuclear periphery, following with bleb of the nuclear and cytoplasmic membranes, culminating in the fragmentation of residual nuclear structure into discrete membrane-bound apoptotic bodies (Wyllie et al., 1980; Kerr et al., 1987). The relationship between drug-induced apoptosis and the cell cycle has been studied (Gorczyca et al., 1993). The topoisomerase inhibitors and hydroxyurea are selectively lethal to S -phase cells, nitrogen mustard preferentially kills G_{1} phase cells, and both irradiation and cisplatin selectively perturb the $\mathrm{G}_{2} / \mathrm{M}$ phase cells (Barry et al., 1990; Sorecson et al., 1990). Also, it was reported that p38 which was activated by the genotoxic chemotherapeuticals was concerned with inhibiting the cell cycle progression at the $\mathrm{G}_{1} / \mathrm{S}$ phase (Molnar et al., 1997). Recently, mitogenactivated protein (MAP) kinase cascades, which is well
known for cell proliferation and the differentiationinducing pathway, was reported to be associated with the apoptotic pathway (Derijard et al., 1994; Kim et al., 1996; Jeon et al., 1998). It has been reported that taxol increases tyrosine phosphorylation of protein, including MAP kinase (Carboni et al., 1993). MAP kinase families include extracellular regulated protein kinase (ERK1, ERK2), p38, which was activated by the genotoxic chemotherapeutics concerned with inhibiting the cell cycle progression at $\mathrm{G}_{1} /$ S phase (Molnar et al., 1997) and stress-activated protein kinase/c-jun N-terminal kinase (SAPK/JNK) (Raingeaud et al., 1995). It has been reported that different signaling pathways were involved in apoptosis (McConkey et al., 1996: Wang et al., 1998.). Among them, the MAP kinase family is known as an intermediate for the apoptotic signal pathway (Gardner and Johnson, 1996). For example, SAPK/JNK cascades were activated in apoptosis by environmental stresses such as inflammatory cytokine (Martin and Schwartz, 1997), ultraviolet C (Kyriakis et al., 1994), gamma irradiation (Yu et al., 1996), and DNA damaging drugs (Jimez et al., 1997). It is known that this phosphorylated kinase leads to transcriptional activation of target genes, including c-jun, c-fos, ATF2 and ATF3 (Cavigelli et al., 1995; van Dam et al., 1995; Baek et al., 1996).

In this report, we have examined the cytotoxicity and apoptitic effect of taxol in HeLa cells. In particular, potent activation of ERK1 and nuclear translocation of MAP kinases were observed after taxol treatment. The significance of these observations have been discussed.

Materials and Methods

Materials The paclitaxel (taxol) was purchased from Sigma Chemical Co. (St. Louis, USA). Anti-phosphor-ERK antibody nor an anti-phosphor-c-jun antibody was purchased from Upstate Biotechnology (Lake Placid, USA). All other chemicals and reagents were the highest grade commercially available.

Cell culture and in vitro cytotoxicity assay Human cervical carcinoma HeLa cells were maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum without antibiotics nor an anti-fungal agent. All cells were grown at $37^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$. Cytotoxicity was measured by the microculture tetrazolium (MTT) method. Exponential growing cells were inoculated to 1×10^{4} cells/well using 96 -well plates supplemented with 100μ l RPMI 1640. After the treated cells were incubated for $24 \mathrm{~h}, 50 \mu \mathrm{MTT}$ ($1 \mathrm{mg} / \mathrm{ml}$, Sigma) was added and the plates were incubated at $37^{\circ} \mathrm{C}$ for 4 h . To dissolve formazan, $150 \mu \mathrm{I}$ DMSO was added and the plates were measured at 540 nm by spectrometery. The IC_{50} values were determined by plotting the drug concentration versus the survival ratio of the treated cells.

DNA extraction and electrophoresis Five million cells which were treated for 48 h were washed twice in a solution of 50 mM Tris $\cdot \mathrm{HCl}, \mathrm{pH} 8.0,1 \mathrm{mM}$ EDTA, 100 mM NaCl and then lysed
with 500μ lysis buffer (1% Triton X-100, 50 mM Tris $\cdot \mathrm{HCl}, \mathrm{pH}$ $7.5,20 \mathrm{mM}$ EDTA). Lysates were centrifuged by $1000 \times g$ for 10 min , and the supernatants were incubated for 3 h at $37^{\circ} \mathrm{C}$ with $50 \mu \mathrm{~g} / \mathrm{ml}$ RNase A and $120 \mu \mathrm{~g} / \mathrm{ml}$ proteinase K. Then, the DNA was extracted with phenol/chloroform/isoamylalcohol (25:24:1, Sigma). After precipitation, pellets were resuspended in $30 \mu \mathrm{ITE}$ buffer (10 mM Tris $\cdot \mathrm{HCl}, \mathrm{pH} 8.0,1 \mathrm{mM}$ EDTA). Each DNA sample was electrophoresed through a 1.8% agarose gel containing ethidium bromide, and DNA bands were visualized by UV light.

Flow cytometry After exposure for 24 h with compounds, the cells were harvested by $300 \times g$ for 5 min . The pellet was treated with Cycle TEST ${ }^{\text {TM }}$ Plus DNA Reagent Kit (Becton Dickinson) and stained by propidium iodide (PI). A minimum of 2×10^{5} cells were analyzed with a FACScan flow cytometer (Becton Dickinson, Mountain View, USA). Each of the $\mathrm{G}_{1}, \mathrm{~S}, \mathrm{G}_{2} /$ M phases of the cell cycle was calculated using the RFIT program.

Electron microscopy Cells to be processed for electron microscopy were centrifuged at $400 \times \mathrm{g}$, fixed with 2.5% glutaraldehyde in PBS for 2 h , washed in 0.1 M Caocodylate, pH 7.4, and then fixed with $0.1 \% \mathrm{OsO}_{4}$ in 0.1 M Caccodylate for 1 h 30 min . After being washed with 0.1 M Caocodylate, pH 7.4 , the cells were dehydrated in graded ethanol. Then, the cells were impregnated with prophylene oxide and embedded in Polybed 812 (Polyscience Inc., Washington, USA). After $60^{\circ} \mathrm{C}$ incubation, the cells were cut, and stained with uranyl acetate and lead citrate.

Preparation of nuclear extracts All the fractional procedures were performed at $0-4^{\circ} \mathrm{C}$. The treated cells were washed twice and collected into 1 ml hypotonic lysis buffer (1 mM EGTA, 1 mM EDTA, $10 \mathrm{mM} \beta$-glycerophosphate, $10 \mu \mathrm{~g}$ of pepstain and leupeptin per $\mathrm{ml}, \mathrm{pH} 7.5$). The cellular suspension was homogenized and harvested at $600 \times \mathrm{g}$ for 5 min . The supernatant was centrifuged at $12,000 \times g$ for 20 min to prepare the cytosol fraction. The pellets were suspended by 0.25 M sucrose containing 1.5% citric acid and passed three times through a 26 gauge needle and loaded onto 1 ml of a 0.88 M sucrose cushion containing 1.5% citric acid. After centrifugation at $900 \times \mathrm{g}$ for 10 min , the pellets, representing the nuclear fraction, were dissolved with hypotonic lysis buffer containing 0.5% Igepal CA-630, 0.1% deoxycholate, 0.1% Brij-35, and then centrifuged at $10,000 \times g$ for 10 min . The purity of the nuclear fraction was determined by measuring the contaminating lactate dehydrogenase activity, a cytosol marker. Then, the nuclear fractions were confirmed by Western blot analysis.

Immunoblot analysis For a MAP kinase immunoblot assay, the prepared nuclear extracts isolated from taxol-treated HeLa cells were electrophoresed on 12% polyacrylamide gel in the presence of SDS. After electrophoresis, proteins were transferred to nitrocellulose membranes, blocked in TBST (10 mM Tris- HCl , $\mathrm{pH} 8.0,150 \mathrm{mM} \mathrm{NaCl}, 0.15 \%$ Tween-20) containing 2% bovine serum albumin. Then the membrane was incubated with antiERK antibodies at a $1: 500$ dilution in TBST containing 2% bovine serum albumin for 1 h , and then washed 3 times in TBST. The blots were incubated with horseradish peroxidase conjugated anti-sheep Ig antibodies at a $1: 1,000$ dilution in TBST containing
2% bovine serum albumin for 1 h , and then washed 3 times in TBST, and were detected with diaminobenzidine.

Results and Discussion

In vitro cytotoxic effect of taxol Prior to measurement of the cytotoxic effect of taxol on HeLa cells, we analyzed the pattern of HeLa cell growth. The cells grew exponentially over 3 days. HeLa cells were incubated for 24 h after treatment with taxol. Following appropriate incubation, live cells were analyzed by MTT assay. The IC_{50} value of taxol was 13 nM (Fig. 1). It was reported that the IC_{50} values of taxol in other cell lines such as HT-29, U373, A549, and PC-Sh cell were 2.8, 4.2, 4.1, and 7.5 nM respectively (Liebmann et al., 1993).

DNA fragmentation In order to determine the apoptotic effect of taxol, we examined the apoptotic response as judged by the appearance of a DNA ladder by gel electrophoresis. The DNA ladder patterns with taxol began to appear at a 50 nM concentration (Fig. 2). This result was comparable to the exposure of 698 cells to 100 nM taxol for 24 h which produced the classical internucleosomal DNA fragmentation of apoptosis (Tang et al., 1994).

Cell cycle analysis It has been known that most antitumor drugs which induce apoptosis cause cell cycle arrest, but the mechanism by which this occurs has not been uncovered yet. Recently, it was reported that the apoptotic signal pathway is related with the arrested phase of the cell cycle (Cortes et al., 1997; Molnar et al., 1997). In order to analyze the cell cycle influence by taxol, the treated cells were labeled with propidium iodide (PI) and were analyzed by flow cytometry (FACScan). The DNA content peaks of HeLa cells that were exposed at the various concentrations of taxol were measured (Fig. 3). The result showed that 1 nM taxol arrested cells in the $\mathrm{G}_{2} / \mathrm{M}$ phase, but this shifted to the S phase when cells were treated with 5 nM and 10 nM toxol. These results indicated that taxol inhibits the cell cycle progression by arresting the $\mathrm{G}_{2} / \mathrm{M}$ phase cell, and then later the S phase, and the taxol concentration for cell cycle arrest was lower than the DNA fragmentationinduced concentration.

Fig. 1. Cell survival ratio of HeLa cell lines after 24 h exposure with taxol. The points $(\$)$ represent the means of at least three replicates.

Fig. 2. DNA fragmentation extracted from HeLa cell lines treated with taxol. Lane 1, 1 Kbp ladder marker; lane 2, control; lanes 38, taxol 0.1, 0.5, 1, 5, 10, 50 nM .

Electron microphotography When the condensed nuclei were fixed with glutaraldehyde and examined by thin section EM, they showed a striking similarity to the nuclei of cells undergoing apoptosis. These spherical domains often appeared to be in the process of budding outwards through the nuclear envelope (Fig. 4). When nuclei were left in the extracts for long periods of time, the DNA was released into the extract as individual highly condensed 'pebbles'. That was the evidence that the domains were actually budding outwards through the nuclear envelop during apoptosis (Kerr et al., 1972; 1987; Wyllie et al., 1980). Given this strong resemblance in the morphological events of apoptosis, the events of chromosome condensation and blebbing that occured in the taxol-treated cell would be refered to as "morphological apoptosis".

Activation and translocation into the nucleus of MAP
kinase (ERK1) It is known that the MAP kinase kinase (ERK1) It is known that the MAP kinase pathway is involved in apoptotic signal transduction (Wang et al., 1998). To determine if ERKs, a member of the MAP kinase family, were activated during taxol-stimulated apoptotic response, we examined the phosphorylation of ERKs by immunoblot analysis (Fig. 5). HeLa cells were exposed with 50 nM Taxol for $10,20,30$, and 60 min . It is known that MAP kinases are phosphorylated on both tyrosine and threonine residues in response to various stimulation (Boulton et al., 1991). It was found that the activation of ERK 1 was confirmed by immunoblot analysis using anti-ERKs antibody. Taxol activated the 44 kDa ERK1 at 10, 20, and 30 min after treatment and disappeared at 60 min . There is a report that the activated ERKs were translocated into the nucleus (Chen et al., 1992). To confirm this, we prepared the separation of

Fig. 3. Cell cycle analysis of HeLa cells exposured to taxol by flow cytometry. A. Untreated cells ($\mathrm{G}_{1}, 58.1 \% ; \mathrm{S}, 36.6 \% ; \mathrm{G}_{2}+\mathrm{M}, 5.2 \%$). B. 1 nM exposed cells ($\mathrm{G}_{1}, 28.6 \% ; \mathrm{S}, 55.6 \% ; \mathrm{G}_{2}+\mathrm{M}, 15.9 \%$). C. 5 nM exposed cells ($\mathrm{G}_{1}, 44.0 \%$; S, $53.8 \% ; \mathrm{G}_{2}+\mathrm{M}, 2.2 \%$). D. 10 nM exposed cells ($\mathrm{G}_{1}, 13.7 \%$; S, 81.2%; $\mathrm{G} 2+\mathrm{M}, 5.1 \%$).

Fig. 4. Electron micrographs ($\times 4,000$) of HeLa cell treated with 50 nM taxol for 24 h (B-D); taxol-free control (A). Cell morphological change occurred from B to D.
nuclei from the cells exposed with Taxol for 10,30 , and 60 min and examined this by immunoblot analysis (Fig. 6). Our result showed that ERK $1(44 \mathrm{kDa})$ appeared to be in the nuclear fraction at 10 and 20 min , but it disappeared at 30 min . As shown in Fig. 6, ERK 1 was phosphorylated and translocated into the nucleus by Taxol at the same condition of inducing apoptosis. Accordingly, ERK 1 may
be involved in the signal transduction pathway of Taxolinduced apoptosis.
c-jun phosphorylation To investigate the nuclear target phosphorylated by Taxol, cytosol from control and Taxoltreated HeLa cells were examined for the activity of transcriptional factor phospho-c-jun by immunoblot

Fig. 5. Immunoblot analysis of phospho-MAP Kinase. The starved HeLa cells were treated with taxol for $10,20,30,60 \mathrm{~min}$ (lanes 2-5); serum-free cellular fraction (lane 1).

Fig. 6. Immunoblot analysis of phospho-MAP Kinase translocation to the nucleus. The starved HeLa cells were treated with taxol for $10,20,30,60 \mathrm{~min}$ (lanes 2-5); serum-free nuclear fraction (lane 1).

Fig. 7. Immunoblotting assay of phospho-c-jun from the HeLa cell treated with 50 nM taxol for $10,20,30$ and 60 min (lanes 25); serum-free cellular fraction (lane 1).
analysis. Crude extract obtained from control cells revealed a low level of phospho-c-jun activity, whereas the level of 10 and 20 min in taxol-treated HeLa cells were comparatively higher (Fig. 7). Treatment of several cell lines with $\mathrm{H}_{2} \mathrm{O}_{2}$ primarily evoked an activation of ERKs while JNKs were stimulated only moderately (Guyton et al., 1996).

In summary, taxol at an effective dose has an anti-tumor activity against cervical cancer cells and induces the apoptotic response. It was found that taxol initially induced the G2/M phase arrests, and later S phase arrests. Also, the results imply that the activation and nuclear translocation of ERK 1 by taxol treatment may be related to apoptotic signal transduction, and suggest that c-Jun might be a downstream effector responding to the treatment with Taxol.

Acknowledgments The authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1997.

Reference

Barry, M. A., Behnke, C. A. and Eastman, A. (1990) Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drug toxins and hyperthermia. Biochem. Pharmacol. 40, 2353-2362.
Baek, J. H., Kang, C. M., Chung, H. Y., Park, M. H. and Kim, K. W. (1996) Increased expression of $c-j u n$ in the bile acidinduced apoptosis in mouse F9 teratocarcinoma stem cells. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) 29, 68-72.
Bhalla, K., Ibrado, A. M., Tourkina, E., Tang, C., Mahoney, M. E. and Huang, Y. (1993) Taxol induces internucleosomal DNA fragmentation associated with programmed cell death in human myeloid leukemia cells. Leukemia (Baltimore) 7, 563-568.
Boulton, T. G., Nye, S. H., Robbins, D. J., Ip, N. Y., Radziejewska, E. and Morgenbesser, S. D. (1991) ERKs: A family of protein serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663-675.
Carboni, J. M., Singh, C. and Tepper, M. A. (1993) Taxol and lipopolysaccharide activation of a murine macrophage cell line and induction of similar tyrosine phosphoproteins. Monogr. Nat. Cancer Inst. 15, 95-101.
Cavigelli, M., Dolfi, F., Claret, F. X. and Karin, M. (1995) Induction of c-fos expression through JNK-mediated TCF/ElkI phosphorylation. EMBO J. 14, 5957-5964.
Chen, R. H., Sharnecki, C. and Blenis. J. (1992) Nuclear localization and regulation of erk- or rsk-encoded protein kinases. Mol. Cell Biol. 12, 915-927.
Cortes, D., Reuther, G. and Pendergast, A. M. (1997) The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates Gl-to-S phase transition in hematopoietic cells. Oncogene 15, 2333-2342.
Derijard, B., Hibi, M., Wu, I. H., Barrett, T., Su, B., Deng, T., Karin, M. and Davis, R. J. (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 25 , 1025-1037.
Derry, W. B., Wilson, L. and Jordan, M. A. (1995) Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry. 34, 2203-2211.
Donaldson, K. L., Goolsby, G. L., Kiener, P. A. and Wahl, A. F. (1994) Activation of p34cdc2 coincident with taxol-induced apoptosis. Cell Growth \& Differ. 5, 1041-1050.
Fisher, D. E. (1994) Apoptosis in cancer therapy: crossing the threshold. Cell 78, 539-542.
Fuchs, D. A. and Johnson, R. K. (1978) Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. Cancer Treat. Rep. 62, 1219-1222.
Gardner, A. M. and Johnson, G. L. (1996) Fibroblast growth factor-2 suppression of tumor necrosis factor alpha-mediated apoptosis requires Ras and the activation of mitogen-activated protein kinase. J Biol. Chem. 271, 14560-14566.
Gorczyca, W.. Gong, J., Ardelt, B., Traganos, F. and Darzynkiewicz, Z. (1993) The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumor agents. Cancer Res. 53, 3186-3192.
Guyton, K. Z., Liu, Y., Gorospe, M., Xu, Q. and Holbrook, N. J. (1996) Activation of mitogen-activated protein kinase by
$\mathrm{H}_{2} \mathrm{O}_{2}$. Role in cell survival following oxidant injury. J. Biol. Chem. 271, 4138-4142.
Jeon, H., Kim, S. S., Kim, Y. S., Park, I. S., Kim, Y. H., Choi, S. J., Kim, S. K. and Kim, T. U. (1998) Cytotoxic and apoptotic activities of echinomycin derivative (echinomycin-7) on P388 murine leukemia cells. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) 31, 560-564.
Jimenez, L. A., Zanella, C., Fung, H., Janssen, Y. M., Vacek, P., Charland, C., Goldberg, J. and Mossman, B. T. (1997) Role of extracellular signal-regulated protein kinases in apoptosis by asbestos and $\mathrm{H}_{2} \mathrm{O}_{2}$. Am. J. Physiol. 273, 1029.
Jordan, M. A., Toso, R. J., Thrower, D. and Wilson, L. (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. USA 90, 9552-9556.
Kerr, J. F. R., Searle, J. and Harmon, B. V. (1987) Apoptosis; in Perspective on Mammalian Cell Death. C. S. Potten (Ed.) Oxford University Press, Oxford. p93.
Kerr, J. F. R., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257.
Kim, T. U., Yang, S. H. and Kim, S. K. (1996) Cytotoxic and apoptotic effects of echinomycin on murine leukemia cells. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) 29, 489-492.
Kyriakis, J. M. Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J. and Woodgett, J. R. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156.
Liebmann, J. E., Cook, J. A., Teague, D., Fisher, J. and Mitchell, J. B. (1994) Cyclohexamide inhibits the cytotoxicity of paclitaxel (Taxol). Anti-Cancer Drugs. 5, 287-292.
Liebmann, J. E., Cook, J. A., Lipschultz, C., Teague, D., Fisher, J. and Mitchell, J. B. (1993) Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. J. Cancer 68, 1104-1109.
Liu, Y., Bhalla, K., Hill, C. and Priest, D. G. (1994) Evidence for involvement of tyrosine phosphorylation in taxol-induced apoptosis in a human ovarian tumor cell line. Biochem. Pharmacol. 48, 1265-1272.
Long, B. H. and Fairchild, C. R. (1994) Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telophase. Cancer Res. 54, 4355-4361.
Lopes, N. M., Adams, E. G., Pitts, T. W. and Bhuyan, B. K. (1993) Cell kill kinetics and cell cycle effects of taxol on human and hamster ovarian cell lines. Cancer Chemother. Phromacol. 32, 235-242.
Martin, D. S. and Schwartz, G. K. (1997) Chemotherapeutically induced DNA damage, ATP depletion, and the apoptotic biochemical cascade. Oncol. Res. 9, 1-5.

McConkey, D. J., Orrenius, S. and Jondal, M. (1996) Cellular signaling in programmed cell death (apoptosis). Immunol. Today 11, 120-121.
Milas, L., Hunter. N. R., Kurdoglu, B., Mason, K. A., Meyn, R. E., Stephens, L. C. and Peters, L. J. (1995) Kinetics of mitotic arrest and apoptosis in murine mammary and ovarian tumors treated with taxol. Cancer Chemother. Pharmacol. 35, 297-303.
Molnar. A., Theodoras, A. M., Zon, L. I. and Kyriakis, J. M. (1997) Cdc42Hs, but not Racl, inhibits serum-stimulated cell cycle progression at $\mathrm{G}_{1}-S$ through a mechanism requiring p38/ RK. J. Biol. Chem. 272, 13229-13235.
Raingeaud, J., Gupta, S., Rogers. J. S., Dickens, M., Han, J., Ulevitch, R. J. and Davis, R. J. (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogenactivated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420-7426.
Rieder, C. L., Schultz, A., Cole, R. and Sluder, G. (1994) Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell. Biol. 127, 1301-1310.
Rowinsky, E. K. and Donehower R. C. (1995) Paclitaxel N. Engl. J. Med. 332, 1004-1014.

Schiff, P. B. and Horwitz, S. B. (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA 77, 1561-1565.
Sen, S. and D’Incalci, M. (1992) Apoptosis: Biochemical events and relevance to cancer chemotherapy. FEBS Lett. 307, 122-127.
Sorecson, C. M., Barry, M. A and Eastman, A. (1990) Analysis of event associated with cell cycle arrest at G_{2} phase and cell death induced by cisplatin. J. Natl. Cancer Inst. 82, 749-755.
Tang, C., Willingham, M. C., Reed, J. C., Miyashita, T., Ray, S., Ponnathpur, V., Huang, Y., Mahoney, M. E., Bullock, G. and Bhalla, K. (1994) High levels of p26BCL-2 oncoprotein retard taxol-induced apoptosis in human pre-B leukemia cells. Leukemia 8, 1960-1969.
van Dam, H., Wilhelm, D., Herr, I., Steffen, A., Herrlich, P. and Angel, P. (1995) ATF-2 is preferentially activated by stressactivated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J. 14, 1798-1811.
Wang, T. H., Wang, H. S. and Ichijo, H. (1998) Microtubuleinterfering agents activate c-Jun N -terminal kinase/stressactivated protein kinase through both as apoptosis signalregulating kinase pathways. J. Biol. Chem. 273, 4928-4936.
Wyllie, A. H., Kerr, J. F. R and Currie, A. R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251-306.
Yu, R., Shtil, A. A., Tan, T. H., Roninson, I. B. and Kong, A. N. (1996) Adriamycin activates c-jun N -terminal kinase in human leukemia cells: a relevance to apoptosis. Cancer Lett. 107, 73.

[^0]: * To whom correspondence should be addressed.

 Tel: 82-371-760-2424; Fax: 82-371-763-5224
 E-mail: Kimtu@dragon.yonsei.ac.kr

