DOI QR코드

DOI QR Code

The Role of Gastrokine 1 in Gastric Cancer

  • Yoon, Jung Hwan (Department of Pathology, College of Medicine, The Catholic University of Korea) ;
  • Choi, Won Suk (Department of Pathology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Olga (Department of Pathology, College of Medicine, The Catholic University of Korea) ;
  • Park, Won Sang (Department of Pathology, College of Medicine, The Catholic University of Korea)
  • Received : 2014.08.12
  • Accepted : 2014.09.13
  • Published : 2014.09.30

Abstract

Homeostatic imbalance between cell proliferation and death in gastric mucosal epithelia may lead to gastritis and gastric cancer. Despite abundant gastrokine 1 (GKN1) expression in the normal stomach, the loss of GKN1 expression is frequently detected in gastric mucosa infected with Helicobacter pylori, as well as in intestinal metaplasia and gastric cancer tissues, suggesting that GKN1 plays an important role in gastric mucosal defense, and the gene functions as a gastric tumor suppressor. In the stomach, GKN1 is involved in gastric mucosal inflammation by regulating cytokine production, the nuclear factor-${\kappa}B$ signaling pathway, and cyclooxygenase-2 expression. GKN1 also inhibits the carcinogenic potential of H. pylori protein CagA by binding to it, and up-regulates antioxidant enzymes. In addition, GKN1 reduces cell viability, proliferation, and colony formation by inhibiting cell cycle progression and epigenetic modification by down-regulating the expression levels of DNMT1 and EZH2, and DNMT1 activity, and inducing apoptosis through the death receptor-dependent pathway. Furthermore, GKN1 also inhibits gastric cancer cell invasion and metastasis via coordinated regulation of epithelial mesenchymal transition-related protein expression, reactive oxygen species production, and PI3K/Akt signaling pathway activation. Although the modes of action of GKN1 have not been clearly described, recent limited evidence suggests that GKN1 acts as a gastricspecific tumor suppressor. This review aims to discuss, comment, and summarize the recent progress in the understanding of the role of GKN1 in gastric cancer development and progression.

Keywords

References

  1. Hall PA, Coates PJ, Ansari B, Hopwood D. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 1994;107:3569-3577.
  2. Baus-Loncar M, Lubka M, Pusch CM, Otto WR, Poulsom R, Blin N. Cytokine regulation of the trefoil factor family binding protein GKN2 (GDDR/TFIZ1/blottin) in human gastrointestinal epithelial cells. Cell Physiol Biochem 2007;20:193-204. https://doi.org/10.1159/000104166
  3. Babyatsky MW, deBeaumont M, Thim L, Podolsky DK. Oral trefoil peptides protect against ethanol- and indomethacininduced gastric injury in rats. Gastroenterology 1996;110:489-497. https://doi.org/10.1053/gast.1996.v110.pm8566596
  4. Toback FG, Walsh-Reitz MM, Musch MW, Chang EB, Del Valle J, Ren H, et al. Peptide fragments of AMP-18, a novel secreted gastric antrum mucosal protein, are mitogenic and motogenic. Am J Physiol Gastrointest Liver Physiol 2003;285:G344-G353. https://doi.org/10.1152/ajpgi.00455.2002
  5. Martin TE, Powell CT, Wang Z, Bhattacharyya S, Walsh-Reitz MM, Agarwal K, et al. A novel mitogenic protein that is highly expressed in cells of the gastric antrum mucosa. Am J Physiol Gastrointest Liver Physiol 2003;28:G332-G343.
  6. Oien KA, McGregor F, Butler S, Ferrier RK, Downie I, Bryce S, et al. Gastrokine 1 is abundantly and specifically expressed in superficial gastric epithelium, down-regulated in gastric carcinoma, and shows high evolutionary conservation. J Pathol 2004;203:789-797. https://doi.org/10.1002/path.1583
  7. Shiozaki K, Nakamori S, Tsujie M, Okami J, Yamamoto H, Nagano H, et al. Human stomach-specific gene, CA11, is downregulated in gastric cancer. Int J Oncol 2001;19:701-707.
  8. Westley BR, Griffin SM, May FE. Interaction between TFF1, a gastric tumor suppressor trefoil protein, and TFIZ1, a brichos domain-containing protein with homology to SP-C. Biochemistry 2005;44:7967-7975. https://doi.org/10.1021/bi047287n
  9. Menheniott TR, Kurklu B, Giraud AS. Gastrokines: stomachspecific proteins with putative homeostatic and tumor suppressor roles. Am J Physiol Gastrointest Liver Physiol 2013;304:G109-G121. https://doi.org/10.1152/ajpgi.00374.2012
  10. Hedlund J, Johansson J, Persson B. BRICHOS - a superfamily of multidomain proteins with diverse functions. BMC Res Notes 2009;2:180. https://doi.org/10.1186/1756-0500-2-180
  11. Sanchez-Pulido L, Devos D, Valencia A. BRICHOS: a conserved domain in proteins associated with dementia, respiratory distress and cancer. Trends Biochem Sci 2002;27:329-332. https://doi.org/10.1016/S0968-0004(02)02134-5
  12. Yoon JH, Choi YJ, Choi WS, Nam SW, Lee JY, Park WS. Functional analysis of the NH2-terminal hydrophobic region and BRICHOS domain of GKN1. Biochem Biophys Res Commun 2013;440:689-695. https://doi.org/10.1016/j.bbrc.2013.09.123
  13. Nardone G, Rippa E, Martin G, Rocco A, Siciliano RA, Fiengo A, et al. Gastrokine 1 expression in patients with and without Helicobacter pylori infection. Dig Liver Dis 2007;39:122-129. https://doi.org/10.1016/j.dld.2006.09.017
  14. Moss SF, Lee JW, Sabo E, Rubin AK, Rommel J, Westley BR, et al. Decreased expression of gastrokine 1 and the trefoil factor interacting protein TFIZ1/GKN2 in gastric cancer: influence of tumor histology and relationship to prognosis. Clin Cancer Res 2008;14:4161-4167. https://doi.org/10.1158/1078-0432.CCR-07-4381
  15. Nardone G, Martin G, Rocco A, Rippa E, La Monica G, Caruso F, et al. Molecular expression of Gastrokine 1 in normal mucosa and in Helicobacter pylori-related preneoplastic and neoplastic gastric lesions. Cancer Biol Ther 2008;7:1890-1895.
  16. Yoon JH, Song JH, Zhang C, Jin M, Kang YH, Nam SW, et al. Inactivation of the Gastrokine 1 gene in gastric adenomas and carcinomas. J Pathol 2011;223:618-625. https://doi.org/10.1002/path.2838
  17. Yoon JH, Choi YJ, Choi WS, Ashktorab H, Smoot DT, Nam SW, et al. GKN1-miR-185-DNMT1 axis suppresses gastric carcinogenesis through regulation of epigenetic alteration and cell cycle. Clin Cancer Res 2013;19:4599-4610. https://doi.org/10.1158/1078-0432.CCR-12-3675
  18. Xing R, Li W, Cui J, Zhang J, Kang B, Wang Y, et al. Gastrokine 1 induces senescence through p16/Rb pathway activation in gastric cancer cells. Gut 2012;61:43-52. https://doi.org/10.1136/gut.2010.230623
  19. Rippa E, La Monica G, Allocca R, Romano MF, De Palma M, Arcari P. Overexpression of gastrokine 1 in gastric cancer cells induces Fas-mediated apoptosis. J Cell Physiol 2011;226:2571-2578. https://doi.org/10.1002/jcp.22601
  20. Guang W, Ding H, Czinn SJ, Kim KC, Blanchard TG, Lillehoj EP. Muc1 cell surface mucin attenuates epithelial inflammation in response to a common mucosal pathogen. J Biol Chem 2010;285:20547-20557. https://doi.org/10.1074/jbc.M110.121319
  21. Isomoto H, Mizuta Y, Miyazaki M, Takeshima F, Omagari K, Murase K, et al. Implication of NF-kappaB in Helicobacter pylori-associated gastritis. Am J Gastroenterol 2000;95:2768-2776.
  22. Sharma SA, Tummuru MK, Blaser MJ, Kerr LD. Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J Immunol 1998;160:2401-2407.
  23. Kang MJ, Ryu BK, Lee MG, Han J, Lee JH, Ha TK, et al. NFkappaB activates transcription of the RNA-binding factor HuR, via PI3K-AKT signaling, to promote gastric tumorigenesis. Gastroenterology 2008;135:2030-2042. https://doi.org/10.1053/j.gastro.2008.08.009
  24. Liu CA, Wang MJ, Chi CW, Wu CW, Chen JY. Rho/Rhotekinmediated NF-kappaB activation confers resistance to apoptosis. Oncogene 2004;23:8731-8742. https://doi.org/10.1038/sj.onc.1208106
  25. Yoon JH, Cho ML, Choi YJ, Back JY, Park MK, Lee SW, et al. Gastrokine 1 regulates NF-$\kappa$B signaling pathway and cytokine expression in gastric cancers. J Cell Biochem 2013;114:1800-1809. https://doi.org/10.1002/jcb.24524
  26. Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer 2010;10:181-193. https://doi.org/10.1038/nrc2809
  27. Liao WC, Lin JT, Wu CY, Huang SP, Lin MT, Wu AS, et al. Serum interleukin-6 level but not genotype predicts survival after resection in stages II and III gastric carcinoma. Clin Cancer Res 2008;14:428-434. https://doi.org/10.1158/1078-0432.CCR-07-1032
  28. Ikeguchi M, Hatada T, Yamamoto M, Miyake T, Matsunaga T, FukumotoY, et al. Serum interleukin-6 and -10 levels in patients with gastric cancer. Gastric Cancer 2009;12:95-100. https://doi.org/10.1007/s10120-009-0509-8
  29. Iwakura Y, Nakae S, Saijo S, Ishigame H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev 2008;226:57-79. https://doi.org/10.1111/j.1600-065X.2008.00699.x
  30. Kabir S. The role of interleukin-17 in the Helicobacter pylori induced infection and immunity. Helicobacter 2011;16:1-8.
  31. Iida T, Iwahashi M, Katsuda M, Ishida K, Nakamori M, Nakamura M, et al. Prognostic significance of IL-17 mRNA expression in peritoneal lavage in gastric cancer patients who underwent curative resection. Oncol Rep 2014;31:605-612. https://doi.org/10.3892/or.2013.2911
  32. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 1991;174:1209-1220. https://doi.org/10.1084/jem.174.5.1209
  33. Hong DS, Angelo LS, Kurzrock R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer 2007;110:1911-1928. https://doi.org/10.1002/cncr.22999
  34. Gudis K, Sakamoto C. The role of cyclooxygenase in gastric mucosal protection. Dig Dis Sci 2005;50 Suppl 1:S16-S23. https://doi.org/10.1007/s10620-005-2802-7
  35. Grosch S, Maier TJ, Schiffmann S, Geisslinger G. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 2006;98:736-747. https://doi.org/10.1093/jnci/djj206
  36. Mao W, Chen J, Peng TL, Yin XF, Chen LZ, Chen MH. Helicobacter pylori infection and administration of non-steroidal anti-inflammatory drugs down-regulate the expression of gastrokine-1 in gastric mucosa. Turk J Gastroenterol 2012;23:212-219. https://doi.org/10.4318/tjg.2012.0345
  37. Resnick MB, Sabo E, Meitner PA, Kim SS, Cho Y, Kim HK, et al. Global analysis of the human gastric epithelial transcriptome altered by Helicobacter pylori eradication in vivo. Gut 2006;55:1717-1724. https://doi.org/10.1136/gut.2006.095646
  38. Choi WS, Seo HS, Song KY, Yoon JH, Kim O, Nam SW, et al. Gastrokine 1 expression in the human gastric mucosa is closely associated with the degree of gastritis and DNA methylation. J Gastric Cancer 2013;13:232-241. https://doi.org/10.5230/jgc.2013.13.4.232
  39. Kouznetsova I, Laubinger W, Kalbacher H, Kalinski T, Meyer F, Roessner A, et al. Biosynthesis of gastrokine-2 in the human gastric mucosa: restricted spatial expression along the antral gland axis and differential interaction with TFF1, TFF2 and mucins. Cell Physiol Biochem 2007;20:899-908. https://doi.org/10.1159/000110450
  40. Otto WR, Patel K, McKinnell I, Evans MD, Lee CY, Frith D, et al. Identification of blottin: a novel gastric trefoil factor family-2 binding protein. Proteomics 2006;6:4235-4245. https://doi.org/10.1002/pmic.200500911
  41. Otto WR, Thim L. Trefoil factor family-interacting proteins. Cell Mol Life Sci 2005;62:2939-2946. https://doi.org/10.1007/s00018-005-5482-8
  42. Kim O, Yoon JH, Choi WS, Ashktorab H, Smoot DT, Nam SW, et al. GKN2 contributes to the homeostasis of gastric mucosa by inhibiting GKN1 activity. J Cell Physiol 2014;229:762-771. https://doi.org/10.1002/jcp.24496
  43. Du JJ, Dou KF, Peng SY, Wang WZ, Wang ZH, Xiao HS, et al. Down-regulated full-length novel gene GDDR and its effect on gastric cancer. Zhonghua Yi Xue Za Zhi 2003;83:1166-1168.
  44. Dai J, Zhang N, Wang J, Chen M, Chen J. Gastrokine-2 is downregulated in gastric cancer and its restoration suppresses gastric tumorigenesis and cancer metastasis. Tumour Biol 2014;35:4199-4207. https://doi.org/10.1007/s13277-013-1550-0
  45. Oien KA, Vass JK, Downie I, Fullarton G, Keith WN. Profiling, comparison and validation of gene expression in gastric carcinoma and normal stomach. Oncogene 2003;22:4287-4300. https://doi.org/10.1038/sj.onc.1206615
  46. Yoshikawa Y, Mukai H, Hino F, Asada K, Kato I. Isolation of two novel genes, down-regulated in gastric cancer. Jpn J Cancer Res 2000;91:459-463. https://doi.org/10.1111/j.1349-7006.2000.tb00967.x
  47. Chetty R, Naidoo R, Tarin M, Sitti C. Chromosome 2p, 3p, 5q and 18q status in sporadic gastric cancer. Pathology 2002;34:275-281. https://doi.org/10.1080/00313020220131354
  48. Panani AD. Cytogenetic and molecular aspects of gastric cancer: clinical implications. Cancer Lett 2008;266:99-115. https://doi.org/10.1016/j.canlet.2008.02.053
  49. Noguchi T, Wirtz HC, Michaelis S, Gabbert HE, Mueller W. Chromosomal imbalances in gastric cancer. Correlation with histologic subtypes and tumor progression. Am J Clin Pathol 2001;115:828-834. https://doi.org/10.1309/2Q9E-3EP5-KYPK-VFGQ
  50. Yuasa Y. Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer 2003;3:592-600. https://doi.org/10.1038/nrc1141
  51. Yoon JH, Seo HS, Choi SS, Chae HS, Choi WS, Kim O, et al. Gastrokine 1 inhibits the carcinogenic potentials of Helicobacter pylori CagA. Carcinogenesis 2014; in press.
  52. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelialmesenchymal transitions in development and disease. Cell 2009;139:871-890. https://doi.org/10.1016/j.cell.2009.11.007
  53. Nieto MA, Cano A. The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Biol 2012;22:361-368. https://doi.org/10.1016/j.semcancer.2012.05.003
  54. Durães C, Almeida GM, Seruca R, Oliveira C, Carneiro F. Biomarkers for gastric cancer: prognostic, predictive or targets of therapy? Virchows Arch 2014;464:367-378. https://doi.org/10.1007/s00428-013-1533-y
  55. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005;436:123-127. https://doi.org/10.1038/nature03688
  56. Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/ AKT pathways. Oncogene 2005;24:7443-7454. https://doi.org/10.1038/sj.onc.1209091
  57. Yoon JH, Kang YH, Choi YJ, Park IS, Nam SW, Lee JY, et al. Gastrokine 1 functions as a tumor suppressor by inhibition of epithelial-mesenchymal transition in gastric cancers. J Cancer Res Clin Oncol 2011;137:1697-1704. https://doi.org/10.1007/s00432-011-1051-8
  58. Walsh-Reitz MM, Huang EF, Musch MW, Chang EB, Martin TE, Kartha S, et al. AMP-18 protects barrier function of colonic epithelial cells: role of tight junction proteins. Am J Physiol Gastrointest Liver Physiol 2005;289:G163-G171. https://doi.org/10.1152/ajpgi.00013.2005
  59. Pavone LM, Del Vecchio P, Mallardo P, Altieri F, De Pasquale V, Rea S, et al. Structural characterization and biological properties of human gastrokine 1. Mol Biosyst 2013;9:412-421. https://doi.org/10.1039/c2mb25308a
  60. Mao W, Chen J, Peng TL, Yin XF, Chen LZ, Chen MH. Downregulation of gastrokine-1 in gastric cancer tissues and restoration of its expression induced gastric cancer cells to apoptosis. J Exp Clin Cancer Res 2012;31:49. https://doi.org/10.1186/1756-9966-31-49
  61. Yan GR, Xu SH, Tan ZL, Yin XF, He QY. Proteomics characterization of gastrokine 1-induced growth inhibition of gastric cancer cells. Proteomics 2011;11:3657-3664. https://doi.org/10.1002/pmic.201100215
  62. Chen P, Lingen M, Sonis ST, Walsh-Reitz MM, Toback FG. Role of AMP-18 in oral mucositis. Oral Oncol 2011;47:831-839. https://doi.org/10.1016/j.oraloncology.2011.06.012
  63. Sinclair NF, Ai W, Raychowdhury R, Bi M, Wang TC, Koh TJ, et al. Gastrin regulates the heparin-binding epidermal-like growth factor promoter via a PKC/EGFR-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2004;286:G992-G999. https://doi.org/10.1152/ajpgi.00206.2002

Cited by

  1. High-mobility-group A2 overexpression provokes a poor prognosis of gastric cancer through the epithelial-mesenchymal transition vol.46, pp.6, 2015, https://doi.org/10.3892/ijo.2015.2947
  2. Positive relationship between p42.3 gene and inflammation in chronic non‐atrophic gastritis vol.16, pp.10, 2014, https://doi.org/10.1111/1751-2980.12282
  3. Polymorphisms of the DNA Methyltransferase 1 Gene Predict Survival of Gastric Cancer Patients Receiving Tumorectomy vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/8578064
  4. A Novel Peptide for Simultaneously Enhanced Treatment of Head and Neck Cancer and Mitigation of Oral Mucositis vol.11, pp.4, 2014, https://doi.org/10.1371/journal.pone.0152995
  5. Comparative population genomics reveals genetic basis underlying body size of domestic chickens vol.8, pp.6, 2016, https://doi.org/10.1093/jmcb/mjw044
  6. Gastrokine 1 protein is a potential theragnostic target for gastric cancer vol.21, pp.6, 2014, https://doi.org/10.1007/s10120-018-0828-8
  7. The diagnostic value of serum gastrokine 1 (GKN1) protein in gastric cancer vol.8, pp.12, 2014, https://doi.org/10.1002/cam4.2457
  8. Keratin 14-high subpopulation mediates lung cancer metastasis potentially through Gkn1 upregulation vol.38, pp.36, 2019, https://doi.org/10.1038/s41388-019-0889-0
  9. Helicobacter pylori inhibits GKN1 expression via the CagA/p‐ERK/AUF1 pathway vol.25, pp.1, 2014, https://doi.org/10.1111/hel.12665
  10. Women with chronic follicular gastritis positive for Helicobacter pylori express lower levels of GKN1 vol.23, pp.4, 2020, https://doi.org/10.1007/s10120-020-01049-5
  11. Coordinate expression loss of GKN1 and GKN2 in gastric cancer via impairment of a glucocorticoid-responsive enhancer vol.319, pp.2, 2014, https://doi.org/10.1152/ajpgi.00019.2020
  12. Uptake and tumor-suppressive pathways of exosome-associated GKN1 protein in gastric epithelial cells vol.23, pp.5, 2014, https://doi.org/10.1007/s10120-020-01068-2
  13. Helicobacter pylori Virulence Factor Cytotoxin-Associated Gene A (CagA)-Mediated Gastric Pathogenicity vol.21, pp.19, 2020, https://doi.org/10.3390/ijms21197430