• Title/Summary/Keyword: nuclear problem

Search Result 788, Processing Time 0.022 seconds

A Comparative Study on the Fault Diagnosis Using Fuzzy Set Concept (Fuzzy집합개념을 이용한 고장진단에 관한 비교연구)

  • Hwang, Won-Guk
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.228-237
    • /
    • 1986
  • This paper provides a comparative study on methodologies for solutions of the inverse problems of certain basic fuzzy relational equations, with which fuzzy set is defined as mapping from sets into complete Brouwerian lattice. Three different algorithms developed so far are discussed and applied to fault diagnosis problem for the main coolant pump of nuclear power plants.

  • PDF

CHALLENGES AND PROSPECTS FOR WHOLE-CORE MONTE CARLO ANALYSIS

  • Martin, William R.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.151-160
    • /
    • 2012
  • The advantages for using Monte Carlo methods to analyze full-core reactor configurations include essentially exact representation of geometry and physical phenomena that are important for reactor analysis. But this substantial advantage comes at a substantial cost because of the computational burden, both in terms of memory demand and computational time. This paper focuses on the challenges facing full-core Monte Carlo for keff calculations and the prospects for Monte Carlo becoming a routine tool for reactor analysis.

Development of Decontamination Methods using Liquid/Supercritical $CO_2$

  • Park, Kwangheon;Moonsung Koh;Chunghyun Yoon;Kim, Hongdoo;Kim, Hakwon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.106-113
    • /
    • 2004
  • A major problem of nuclear energy is the production of radioactive wastes. Needs for more environmentally favorable method to decontaminate radioactive contaminants make the use of liquid/Supercritical $CO_2$ as a solvent medium. In removing radioactive metallic contaminants under $CO_2$ solvent, two methods - use of chelating ligands and that of water in $CO_2$ emulsion - are possible. In the chelating ligand method, a combination of ligands that can make synergistic effects seems important. We discuss about the properties of microemulsion formed by F-AOT. By adding acid in water core, decontamination of metallic parts, soils were possible.

  • PDF

Sensitivity Analysis on the Priority Order of the Radiological Worker Allocation Model using Goal Programming

  • Jung, Hai-Yong;Lee, Kun-Jai
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.577-582
    • /
    • 1998
  • In nuclear power plant, it has been the important object to reduce the occupational radiation exposure (ORE). Recently, the optimization concept of management science has been studied to reduce the ORE in nuclear power plant. In optimization of the worker allocation, the collective dose, working time, individual dose, an total number of worker must be considered and their priority orders must be thought because the main constraint is necessary for determining the constraints variable of the radiological worker allocation problem. The ultimate object of this study s to look into the change of the optimal allocation of the radiological worker as priority order changes. In this study, the priority order is the characteristic of goal programming that is a kind of multi-objective linear programming. From a result of study using goal programming, the total number of worker and collective dose of worker have changed as the priority order has changed and the collective dose limit have played an important role in reducing the ORE.

  • PDF

An accident diagnosis algorithm using long short-term memory

  • Yang, Jaemin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.582-588
    • /
    • 2018
  • Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.

A Method of Knowledge Base Verification for Nuclear Power Plant Expert Systems Using Extended Petri Nets

  • Kwon, I.W.;Seong, P.H.
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.522-531
    • /
    • 1996
  • The adoption of expert systems mainly as operator supporting systems is becoming increasingly popular as the control algorithms of system become more and more sophisticated and complicated. The verification phase of knowledge base is an important part for developing reliable expert systems, especially in nuclear industry. Although several strategies or tools have been developed to perform potential error checking, they often neglect the reliability of verification methods. Because a Petri net provides a uniform mathematical formalization of knowledge base, it has been employed for knowledge base verification. In this work, we devise and suggest an automated tool, called COKEP(Checker Of Knowledge base using Extended Petri net), for detecting incorrectness, inconsistency, and incompletensess in a knowledge base. The scope of the verification problem is expanded to chained errors, unlike previous studies that assume error incidence to be limited to rule pairs only. In addition, we consider certainty factor in checking, because most of knowledge bases have certainty factors.

  • PDF

Thermal Fluid Mixing Behavior during Medium Break LOCA in Evaluation of Pressurized Thermal Shock

  • Jung, Jae-Won;Bang, Young-Seok;Seul, Kwang-Won;Kim, Hho-Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.635-640
    • /
    • 1998
  • Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of Thermal stratification is investigated using Theofanous's empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing.

  • PDF

Acceleration of the AFEN Method by Two-Node Nonlinear Iteration

  • Moon, Kap-Suk;Cho, Nam-Zin;Noh, Jae-Man;Hong, Ser-Gi
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.87-92
    • /
    • 1998
  • A nonlinear iterative scheme developed to reduce the computing time of the AFEN method was tested and applied to two benchmark problems. The new nonlinear method for the AFEN method is based on solving two-node problems and use of two nonlinear correction factors at every interface instead of one factor in the conventional scheme. The use of two correction factors provides higher-order accurate interface noes as well as currents which are used as the boundary conditions of the two-node problem. The numerical results show that this new method gives exactly the same solution as that of the original AEFEN method and the computing time is significantly reduced in comparison with the original AFEN method.

  • PDF

Thin-Plate-Type Embedded Ultrasonic Transducer Based on Magnetostriction for the Thickness Monitoring of the Secondary Piping System of a Nuclear Power Plant

  • Heo, Taehoon;Cho, Seung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1404-1411
    • /
    • 2016
  • Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

Content and Distribution of Transition Metals and Rare Earth Elements in Magnetically and Mechanically Separated Brown Coal Ash

  • Malikov, Sh.R.;Pikul, V.P.;Mukhamedshina, N.M.;Sandalov, V.N.;Kudiratov, S.;Ibragimova, E.M.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.365-369
    • /
    • 2013
  • Coal ash is known to contain a noticeable amount of valuable elements, including transition metals and lanthanides. Therefore it is quite actual problem to extract them for metallurgy and other applications. This paper presents the results of high gradient magnetic and mechanical separation, microscopy, element analyses and optical spectroscopy of brown coal ash taken from the combustion camera and chimney-stalk of Angren thermal power station. The separated magnetic fraction was 3.4 wt.%, where the content of Fe in ferrospheres increased to 58 wt.%. The highest contents of Fe and rare earth elements were found in the fine fractions of $50-100{\mu}m$. Optical absorption spectroscopy of water solutions of the magnetic fractions revealed $Fe^{2+}$ and $Fe^{3+}$ ions in the ratio of ~1:1. The separated coal ash could be used for cleaning of technological liquid waste by means of the high gradient magnetic field.