• Title/Summary/Keyword: nuclear power industry

Search Result 414, Processing Time 0.028 seconds

Export Control System based on Case Based Reasoning: Design and Evaluation (사례 기반 지능형 수출통제 시스템 : 설계와 평가)

  • Hong, Woneui;Kim, Uihyun;Cho, Sinhee;Kim, Sansung;Yi, Mun Yong;Shin, Donghoon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.109-131
    • /
    • 2014
  • As the demand of nuclear power plant equipment is continuously growing worldwide, the importance of handling nuclear strategic materials is also increasing. While the number of cases submitted for the exports of nuclear-power commodity and technology is dramatically increasing, preadjudication (or prescreening to be simple) of strategic materials has been done so far by experts of a long-time experience and extensive field knowledge. However, there is severe shortage of experts in this domain, not to mention that it takes a long time to develop an expert. Because human experts must manually evaluate all the documents submitted for export permission, the current practice of nuclear material export is neither time-efficient nor cost-effective. Toward alleviating the problem of relying on costly human experts only, our research proposes a new system designed to help field experts make their decisions more effectively and efficiently. The proposed system is built upon case-based reasoning, which in essence extracts key features from the existing cases, compares the features with the features of a new case, and derives a solution for the new case by referencing similar cases and their solutions. Our research proposes a framework of case-based reasoning system, designs a case-based reasoning system for the control of nuclear material exports, and evaluates the performance of alternative keyword extraction methods (full automatic, full manual, and semi-automatic). A keyword extraction method is an essential component of the case-based reasoning system as it is used to extract key features of the cases. The full automatic method was conducted using TF-IDF, which is a widely used de facto standard method for representative keyword extraction in text mining. TF (Term Frequency) is based on the frequency count of the term within a document, showing how important the term is within a document while IDF (Inverted Document Frequency) is based on the infrequency of the term within a document set, showing how uniquely the term represents the document. The results show that the semi-automatic approach, which is based on the collaboration of machine and human, is the most effective solution regardless of whether the human is a field expert or a student who majors in nuclear engineering. Moreover, we propose a new approach of computing nuclear document similarity along with a new framework of document analysis. The proposed algorithm of nuclear document similarity considers both document-to-document similarity (${\alpha}$) and document-to-nuclear system similarity (${\beta}$), in order to derive the final score (${\gamma}$) for the decision of whether the presented case is of strategic material or not. The final score (${\gamma}$) represents a document similarity between the past cases and the new case. The score is induced by not only exploiting conventional TF-IDF, but utilizing a nuclear system similarity score, which takes the context of nuclear system domain into account. Finally, the system retrieves top-3 documents stored in the case base that are considered as the most similar cases with regard to the new case, and provides them with the degree of credibility. With this final score and the credibility score, it becomes easier for a user to see which documents in the case base are more worthy of looking up so that the user can make a proper decision with relatively lower cost. The evaluation of the system has been conducted by developing a prototype and testing with field data. The system workflows and outcomes have been verified by the field experts. This research is expected to contribute the growth of knowledge service industry by proposing a new system that can effectively reduce the burden of relying on costly human experts for the export control of nuclear materials and that can be considered as a meaningful example of knowledge service application.

Domestic Greenhouse Gas Reduction Policy (국내 온실가스 감축 정책)

  • Bae, Sung-Ho
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2011
  • For reducing greenhouse gas emissions, the short-term strategy is of existing energy-efficient appliances to facilitate the spread of energy efficiency improvements to improve energy efficiency, energy saving projects that will include investments to enable. R&D is at the core of the long-term strategy. To reduce energy demand, the equipments and processes improved energy efficiency should be developed. In terms of energy supply, the policies for greenhouse gas reduction is to replace fossil fuels by expanding the supply of renewable energy such as solar, wind, geothermal, biomass and nuclear power as nearly zero-emission of greenhouse gas. In terms of energy consumption, measures to reduce greenhouse gas emissions is in line with the policy for efficiency improvement. The buildings & work-site of high-energy consumption in the building & Industry sectors, should implement a policy to strengthening the voluntary agreement on energy-saving facilities and expand to invest in energy saving facilities.

Volume Reduction of the Radioactive Solid Wastes in Hot Cell (핫셀 방사성 고체폐기물 감용)

  • 양송열;서항석;이형권;이은표;권형문;민덕기;김길수;조일제;전용범
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.109-116
    • /
    • 2003
  • The amount of radioactive waste is expected to be increased continuously because of the rapid growth of the domestic nuclear industry, full power operation of the HANARO reactor and the increased research activities of the nuclear fuel cycle. Accordingly the efforts are focused to achieve the handling of radioactive waste in safe and reduce the volume of radioactive waste. The PIEF is carrying out the PIE (post irradiation examination) of spent fuel rods related to the identification of cause defect and evaluation of integration safety. This study describes the technologies and experiences of compaction, shredding and cutting of the solid radioactive waste used in the PIE. The quantity of the high level waste was reduced by 1/12 using the 100-ton compressor installed in hot-cell. Also middle and low level waste was reduced by 1/8 using the 60-ton compressor installed in intervention area. Plastic drums were shredded by crusher to be compacted in the ratio of 1/5, used filters in the ratio of 1/6 and the number of drum is also reduced by cutting procedure for the non-volatile materials such as metal.

  • PDF

Comparison Between FAC Analysis Result Using ToSPACE Program and Experimental Result (ToSPACE 프로그램을 이용한 FAC 해석결과와 실험결과 비교)

  • Hwang, Kyeongmo;Yun, Hun;Seo, Hyukki;Jung, Euije;Kim, Kyungmo;Kim, Dongjin
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.131-137
    • /
    • 2020
  • A number of piping components in the secondary system of nuclear power plants (NPPs) are exposed to aging mechanisms, such as flow-accelerated corrosion (FAC), cavitation, flashing, solid particle erosion, and liquid droplet impingement erosion. Those mechanisms may lead to thinning, leaking, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 in the USA in 1986 and Mihama unit 3 in Japan in 1994, pipe wall thinning management has emerged as one of the most important issues in the nuclear industry. To manage pipe wall thinning, a foreign program has been utilized for NPPs in Korea since 1996. As our experience and knowledge of pipe wall thinning management have accumulated, our program needs to reflect our experience, requests from users, and the result of recent experiments using Flow Accelerated Corrosion Testing System (FACTS). FACTS is the empirical experimental facility developed by Korea Atomic Energy Research Institute (KAERI) for tests. Accordingly, KEPCO-E&C developed a 3D-based pipe wall thinning management program called ToSPACE in 2016. This paper describes a comparison between the FAC analysis results using ToSPACE and the experimental results using FACTS to verify their applicability to pipe wall thinning management in NPPs.

A Study on Surface Etching of Metallic Co and Mo in R.F. Plasma (RF 플라즈마를 이용한 금속 코발트와 몰리브데늄의 표면 식각 연구)

  • 서용대;김용수;정종헌;오원진
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.1
    • /
    • pp.10-16
    • /
    • 2001
  • Recently plasma etching research has been focused on the metal surfaces in the nuclear industry. In this study, surface etching reaction of metallic Co and Mo, principal contaminants in the spent nuclear components, in CF$_4$/O$_2$, gas plasma has been experimentally investigated to look into the applicability and the effectiveness of the technique for the surface decontamination. Experimental variables are $CF_4$/$O_2$ ratio and substrate temperature between 29$0^{\circ}C$ and 38$0^{\circ}C$. Experimental results Show that the optimum gas composition is 80%CF$_4$-20%$O_2$ and the metallic Co and Mo are etched out well enough in the temperatures range. Cobalt starts to be etched above $350^{\circ}C$ and the etching rate increases with increasing substrate temperature. Maximum rate achieved at 38$0^{\circ}C$ under 220 W r.f. plasma power is 0.06 $\mu\textrm{m}$/min. On the other hand, the metallic Mo is etched easily even at low temperature and the reaction rate drastically increases as the substrate temperature goes up. Highest rate obtained under the same conditions is $1.9\mu\textrm{m}$/min. OES (Optical Emission Spectroscopy) analysis reveals that the intensities of F atom and CO molecule reach maximum at the optimum gas composition, which demonstrates that the principal reaction mechanism is fluorination and/or carbonyl reaction. It is confirmed, therefore, that dry processing technique using reactive plasma is quite feasible and applicable for the decontamination of surface-contaminated parts or equipments.

  • PDF

Elemental Analysis by Neutron Induced Nuclear Reaction - Prompt Gamma Neutron Activation Analysis for Chemical Measurement - (중성자 핵반응을 이용한 원소 검출기술 - 즉발감마선 중성자 방사화분석법을 이용한 검출기술 -)

  • Song, Byung Chul;Park, Yong Joon;Jee, Kwang Yong
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.1041-1051
    • /
    • 2003
  • Neutron induced prompt gamma activation analysis (PGAA) offers a nondestructive, sensitive and relatively rapid method for the determination of trace and major elements and is proven to be convenient for online analysis of minerals, metals, coal, cement, petrochemical, coating, paper as well as many other materials and products. The technique has found many uses in medicine, industry, research, security and the detection of contraband items. This report reviews the present status and future trends of the PGAA techniques. Requirements for the system are neutron source, high resolution HPGe detectors with a high-voltage power supply, an amplifier, analog-to-digital converter, and a multichannel analyzer for the detection and measurement of prompt ${\gamma}$-ray emit form the neutron capture elements. Introducing a ${\gamma}$-${\gamma}$ coincidence system also improves the quality of the ${\gamma}$-ray spectrum by suppressing the background created from the Compton scattering of high energy prompt ${\gamma}$-rays. A PGAA system using a $^{252}Cf$ neutron source is currently under construction for the on-line measurement of several elements in aqueous samples at KAERI. The system can be applied for the detection of chemical weapons and explosives as well as various narcotics.

Rocking response of unanchored rectangular rigid bodies to simulated earthquakes

  • Aydin, Kamil
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.343-362
    • /
    • 2004
  • Rocking response of rigid bodies with rectangular footprint, freely standing on horizontal rigid plane is studied analytically. Bodies are subjected to simulated single component of horizontal earthquakes. The effect of baseline correction, applied to simulated excitations, on the rocking response is first examined. The sensitiveness of rocking motion to the details of earthquakes and geometric properties of rigid bodies is investigated. Due to the demonstrated sensitivity of rocking response to these factors, prediction of rocking stability must be made in the framework of probability theory. Therefore, using a large number of simulated earthquakes, the effects of duration and shape of intensity function of simulated earthquakes on overturning probability of rigid bodies are studied. In the case when a rigid body is placed on any floor of a building, the corresponding probability is compared to that of a body placed on the ground. For this purpose, several shear frames are employed. Finally, the viability of the energy balance equation, which was introduced by Housner in 1963 and widely used by nuclear power industry to estimate the rocking stability of bodies, is evaluated. It is found that the equation is robust. Examples are also given to show how this equation can be used.

Evaluation on Corrosion of A106 Carbon Steel using AE Technique (음향방출기법을 이용한 A106 탄소강의 부식평가)

  • Lee, Jin-Kyung;Lee, Sang-Pill
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.100-105
    • /
    • 2008
  • A106 Carbon Steel has recently been used as the material for pipes, nozzles, and tank shells in nuclear power plants. Its corrosion resistance gives the steel many advantages for use in structures under high temperature and high pressure. This steel is also expected to be used as a structural material in the shipbuilding industry for applications involving severe conditions, such as high temperature and pressure. In this study, the mechanical properties of A106 carbon steel were evaluated in regard to its corrosion times. The tensile and yielding strengths decreased as the corrosion time increased. In particular, the tensile strength was influenced by corrosion. In addition, an acoustic emission (AE) technique was used to clarify the microscopic damage to specimens that had undergone corrosion for a certain period. It was found that AE parameters, such as events, energy, duration time, and amplitude were useful for evaluating the degree of damage and remaining life of the corroded specimen. Various properties of the waveform and frequency range were also seen, based on the degree of damage to the specimen from the corrosion time.

A Study on the Machinability of the Micro-EDM Depending on the Materials (재료변화에 따른 Micro-EDM에서의 가공성에 관한 연구)

  • Lee, Sang-Kuk;Kim, Tae-Hyun;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.658-665
    • /
    • 2012
  • Micro-EDM is widely used in metallic pattern, electronics, nuclear power and industry in the form of precision process. The improvement of Electro Discharge Machining has been on a steady progress since $19^{th}$ century. The technology has overcome the limits of the traditional precision process, enabling micro-EDM, micro electrolytic machining, micro drilling, micro punching and laser beam machining, which create versatile products with smaller sizes. What have been known about the major feature of Micro-EDM is high thermal energy so that their products are free from the hardness of their products as long as they are electrical conductor. However, each metal is suspected to have different features and natures even if they are created through the same procedure. In this thesis, the methodology of Micro-EDM and how to categorize them are explained. Also, the nature of the examined materials with surface shape and surface roughnes are analyzed. The results of the experiments are expected to understand surface roughness and workability of other materials for Micro-EDM.

Optimal LNG Procurement Policy in a Spot Market Using Dynamic Programming (동적 계획법을 이용한 LNG 현물시장에서의 포트폴리오 구성방법)

  • Ryu, Jong-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • Among many energy resources, natural gas has recently received a remarkable amount of attention, particularly from the electrical generation industry. This is in part due to increasing shale gas production, providing an environment-friendly fossil fuel, and high risk of nuclear power. Because South Korea, the world's second largest LNG importing nation after Japan, has no international natural gas pipelines and relies on imports in the form of LNG, the natural gas has been traditionally procured by long term LNG contracts at relatively high price. Thus, there is a need of developing an Asian LNG trading hub, where LNG can be traded at more competitive spot prices. In a natural gas spot market, the amount of natural gas to be bought should be carefully determined considering a limited storage capacity and future pricing dynamics. In this work, the problem to find the optimal amount of natural gas in a spot market is formulated as a Markov decision process (MDP) in risk neutral environment and the optimal base stock policy which depends on a stage and price is established. Taking into account price and demand uncertainties, the basestock target levels are simply approximated from dynamic programming. The simulation results show that the basestock policy can be one of effective ways for procurement of LNG in a spot market.