• 제목/요약/키워드: nuclear pore

검색결과 110건 처리시간 0.034초

U$O_2$핵연료의 기공 특성에 대한 연구 (A Study on the Pore Characteristics of the U$O_2$ Fuel)

  • Song, K-W;K.S. Seo;Sohn, D-S;Kim, S.H.;I.S.Chang;H.S. Chang
    • Nuclear Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.49-55
    • /
    • 1991
  • AUC공정으로 제조된 $UO_2$분말을 사용하여 소결체를 제조하여 미세 조직과 기공특성에 대하여 시험하였다. 개기공은 소결밀도 증가에 따라서 감소하였으며, 소결밀도 10.45 g/㎤ 이상에서는 거의 소멸하였다. 3$\mu$m보다 작은 크기의 둥근 기공이 모든 밀도에서 나타났고 낮은 밀도에서는 이것외에도 긴 기공이 관찰되었다. 같은 크기의 기공일지라도 밀도가 낮아지면 기공이 더욱 길게 나타났다. 기공크기에 따른 기공 면적의 분포는 mono 모우드이고, 2~3$\mu$m 기공크기에서 최대치를 보이는 분포를 보였다. 또한 밀도가 감소할수록 큰 기공에 관련된 면적이 증가하였다.

  • PDF

Modeling of Pore Coarsening in the Rim Region of High Burn-up UO2 Fuel

  • Xiao, Hongxing;Long, Chongsheng
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.1002-1008
    • /
    • 2016
  • An understanding of the coarsening process of the large fission gas pores in the high burn-up structure (HBS) of irradiated $UO_2$ fuel is very necessary for analyzing the safety and reliability of fuel rods in a reactor. A numerical model for the description of pore coarsening in the HBS based on the Ostwald ripening mechanism, which has successfully explained the coarsening process of precipitates in solids is developed. In this model, the fission gas atoms are treated as the special precipitates in the irradiated $UO_2$ fuel matrix. The calculated results indicate that the significant pore coarsening and mean pore density decrease in the HBS occur upon surpassing a local burn-up of 100 GWd/tM. The capability of this model is successfully validated against irradiation experiments of $UO_2$ fuel, in which the average pore radius, pore density, and porosity are directly measured as functions of local burn-up. Comparisons with experimental data show that, when the local burn-up exceeds 100 GWd/tM, the calculated results agree well with the measured data.

Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone

  • Zeng, Sheng;Shen, Yuan;Sun, Bing;Tan, Kaixuan;Zhang, Shuwen;Ye, Wenhao
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1175-1184
    • /
    • 2022
  • The pore structure of uranium-bearing sandstone is one of the critical factors that affect the uranium leaching performance. In this article, uranium-bearing sandstone from the Yili Basin, Xinjiang, China, was taken as the research object. The fractal characteristics of the pore structure of the uranium-bearing sandstone were studied using mercury intrusion experiments and fractal theory, and the fractal dimension of the uranium-bearing sandstone was calculated. In addition, the effect of the fractal characteristics of the pore structure of the uranium-bearing sandstone on the uranium leaching kinetics was studied. Then, the kinetics was analyzed using a shrinking nuclear model, and it was determined that the rate of uranium leaching is mainly controlled by the diffusion reaction, and the dissolution rate constant (K) is linearly related to the pore specific surface fractal dimension (DS) and the pore volume fractal dimension (DV). Eventually, fractal kinetic models for predicting the in-situ leaching kinetics were established using the unreacted shrinking core model, and the linear relationship between the fractal dimension of the sample's pore structure and the dissolution rate during the leaching was fitted.

Pore structure evolution characteristics of sandstone uranium ore during acid leaching

  • Zeng, Sheng;Shen, Yuan;Sun, Bing;Zhang, Ni;Zhang, Shuwen;Feng, Song
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4033-4041
    • /
    • 2021
  • To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.

Microstructural Changes of AlOOH Doped $UO_2$ Pellet during the Annealing Process

  • Hosik Yoo;Lee, Shinyoung;Lee, Seungjae;Kwenho Kang;Kim, Hyoungsu
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.209-213
    • /
    • 2000
  • Microstructural changes of AlOOH doped UO$_2$pellet after annealing up to 216h have been observed and they were compared with those of the standard pellet. Grain and pore size of UO$_2$pellet increased with the addition of AlOOH and its effect was still validated during annealing. Densification rate was reduced by the addition of AlOOH and it was attributed to coarsened pores with spherical shape. Grain and pore growth was stopped and density increase was the least after 144h of annealing. The variation of pore size resulting from annealing has a linear relationship with that of grain size.

  • PDF

3D reconstruction of two-phase random heterogeneous material from 2D sections: An approach via genetic algorithms

  • Pizzocri, D.;Genoni, R.;Antonello, F.;Barani, T.;Cappia, F.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2968-2976
    • /
    • 2021
  • This paper introduces a method to reconstruct the three-dimensional (3D) microstructure of two-phase materials, e.g., porous materials such as highly irradiated nuclear fuel, from two-dimensional (2D) sections via a multi-objective optimization genetic algorithm. The optimization is based on the comparison between the reference and reconstructed 2D sections on specific target properties, i.e., 2D pore number, and mean value and standard deviation of the pore-size distribution. This represents a multi-objective fitness function subject to weaker hypotheses compared to state-of-the-art methods based on n-points correlations, allowing for a broader range of application. The effectiveness of the proposed method is demonstrated on synthetic data and compared with state-of-the-art methods adopting a fitness based on 2D correlations. The method here developed can be used as a cost-effective tool to reconstruct the pore structure in highly irradiated materials using 2D experimental data.

A conditional lethal mutation of a nucleoporin gene, NUP49 in saccharomyces cerevisiae

  • Lee, Youn-Soo;Song, Young-Ja;Kyung, Hwang-Mi;Lee, Woo-Bok;Kim, Jin-Mi
    • Journal of Microbiology
    • /
    • 제35권3호
    • /
    • pp.234-238
    • /
    • 1997
  • Conditional lethal mutation nup49-1 of a nuclear pore complex component gene was constructed in Saccharomyces cerevisiae. This mutation deleted one third of the essential NUP49 gene at the carboxy-terminal, but retained 13 repeats of the highly conserved GLFG domain. The nup49-1 mutant strain was viable with a slow-growth phenotype, indicating that the C-terminal is dispensable at normal growth temperature. This strain exhibited both temperature-sensitivity at 37.deg.C and cold-sensitivity at 16.deg.C. Temperature shift experiments revealed that the arrest phenotype at 37.deg.C was random in the cell division cycle. The nup49-1 mutation was tested to be recessive and is expected to be useful for the functional analysis of nuclear pore complex proteins as well as for studies of nuclear transport systems.

  • PDF

Effect of gamma irradiation on the critical heat flux of nano-coated surfaces

  • Rahimian, A.;Kazeminejad, H.;Khalafi, H.;Akhavan, A.;Mirvakili, M.
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2353-2360
    • /
    • 2020
  • An anodic electrophoretic deposition (EPD) technique is used to create a uniform TiO2 thin film coating on boiling thin steel plates (1.1 mm by 90 mm). All of the effective parameters except time of the EPD method are kept constant. To investigate the effect of gamma irradiation on the critical heat flux (CHF), the test specimens were irradiated in a gamma cell to different doses ranging from 100 to 300 kGy, and then SEM and BET analysis were performed. For each coated specimen, the contact angle and capillary length were measured. The specimens were then tested in a boiling pool for CHF and boiling heat transfer coefficient. It was observed that irradiation significantly decreases the maximum pore diameter while it increases the porosity, pore surface area and pore volume. These surface modifications due to gamma irradiation increased the CHF of the nano-coated surfaces compared to that of the unirradiated surfaces. The heat transfer coefficient (HTC) of the nano-coated surfaces irradiated at 300 kGy increased from 83 to 160 kW/(㎡ K) at 885 kW/㎡ wall heat flux by 100%. The CHF of the irradiated (300 kGy) and unirradiated surfaces are 2035 kW/㎡ and 1583 kW/㎡, respectively, an increase of nearly 31%.

Influence of burial conditions on the seepage characteristics of uranium bearing loose sandstone

  • Quan Jiang;Mingtao Jia;Yihan Yang;Qi Xu;Chuanfei Zhang;Xiangxue Zhang;Meifang Chen
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1357-1371
    • /
    • 2024
  • To investigate the influence of different burial conditions on the seepage characteristics of loose sandstone in the leaching mining of sandstone uranium ore, this study applied different ground pressures and water pressures to rock samples at different burial depths to alter the rock's seepage characteristics. The permeability, pore distribution, and particle distribution characteristic parameters were determined, and the results showed that at the same burial depth, ground pressure had a greater effect on the reduction in permeability than water pressure. The patterns and mechanisms are as follows: under the influence of ground pressure, increasing the burial depth compresses the pores in the rock samples, decreases the proportion of effective permeable pores, and causes particle fragmentation, which blocks pore channels, resulting in a decrease in permeability. Under the influence of water pressure, increasing the burial depth expands the pores but also causes hard clay particles to decompose and block pore channels. As the burial depth increases, the particles eventually decompose completely, and the permeability initially decreases and then increases. In this experiment, the relationships between permeability and the proportion of pores larger than 0.15 ㎛ and the proportion of particles smaller than 59 ㎛ were found to be the most significant.