• Title/Summary/Keyword: nuclear physics

Search Result 1,077, Processing Time 0.033 seconds

Effects of Sintering Temperature and SiC Contents on the Microstructure and Superconducting Properties of In-situ $MgB_2$ Wires (In-situ $MgB_2$ 선재의 소결온도와 SiC 함량에 따른 미세조직 및 초전도 특성 연구)

  • Hwang, Soo-Min;Park, Eui-Cheol;Park, Si-Hong;Jang, Seok-Hern;Kim, Kyu-Tae;Lim, Jun-Hyung;Joo, Jin-Ho;Kang, Won-Nam;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2007
  • We fabricated the in-situ $MgB_2$ wires using the powder-in-tube method and investigated the effects of sintering temperature and SiC contents on the microstructure and superconducting properties. Pure $MgB_2$ wires and 5, 10, 20 wt.% SiC doped $MgB_2$ wires were sintered at $600-1000^{\circ}C$ for 30 minutes in Ar atmosphere. We found that $MgB_2$ phase was mostly formed at the sintering temperature of $700^{\circ}C$ and above, and the critical temperature ($T_c$) increased with increasing sintering temperature. For the $MgB_2$ sintered at $850^{\circ}C$, the highest critical current density ($J_c$) was obtained to be $3.7{\times}10^5\;A/cm^2$ at 5 K and 1.6 T by a magnetic properties measurement system (MPMS). The addition of SiC to the $MgB_2$ wires changed microstructure and critical properties. SEM observation showed that the $MgB_2$ core had considerable micro-cracks in undoped wire and the density of micro-cracks decreased with increasing SiC contents. The critical temperature decreased as the SiC contents increased, on the other hand, the critical current density of SiC doped $MgB_2$ wires in high magnetic field was enhanced compared to that of undoped $MgB_2$ wires.

  • PDF

Purification, and Biochemical and Biophysical Characterization of Cellobiohydrolase I from Trichoderma harzianum IOC 3844

  • Colussi, Francieli;Serpa, Viviane;Da Silva Delabona, Priscila;Manzine, Livia Regina;Voltatodio, Maria Luiza;Alves, Renata;Mello, Bruno Luan;Nei, Pereira Jr.;Farinas, Cristiane Sanches;Golubev, Alexander M.;Santos, Maria Auxiliadora Morim;Polikarpov, Igor
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.808-817
    • /
    • 2011
  • Because of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pI of 5.23. As confirmed by smallangle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed ${\alpha}$- helices and ${\beta}$-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of $50^{\circ}C$ with specific activities against Avicel and p-nitrophenyl-${\beta}$-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.

Gene Expression Biodosimetry: Quantitative Assessment of Radiation Dose with Total Body Exposure of Rats

  • Saberi, Alihossein;Khodamoradi, Ehsan;Birgani, Mohammad Javad Tahmasebi;Makvandi, Manoochehr
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8553-8557
    • /
    • 2016
  • Background: Accurate dose assessment and correct identification of irradiated from non-irradiated people are goals of biological dosimetry in radiation accidents. Objectives: Changes in the FDXR and the RAD51 gene expression (GE) levels were here analyzed in response to total body exposure (TBE) to a 6 MV x-ray beam in rats. We determined the accuracy for absolute quantification of GE to predict the dose at 24 hours. Materials and Methods: For this in vivo experimental study, using simple randomized sampling, peripheral blood samples were collected from a total of 20 Wistar rats at 24 hours following exposure of total body to 6 MV X-ray beam energy with doses (0.2, 0.5, 2 and 4 Gy) for TBE in Linac Varian 2100C/D (Varian, USA) in Golestan Hospital, in Ahvaz, Iran. Also, 9 rats was irradiated with a 6MV X-ray beam at doses of 1, 2, 3 Gy in 6MV energy as a validation group. A sham group was also included. After RNA extraction and DNA synthesis, GE changes were measured by the QRT-PCR technique and an absolute quantification strategy by taqman methodology in peripheral blood from rats. ROC analysis was used to distinguish irradiated from non-irradiated samples (qualitative dose assessment) at a dose of 2 Gy. Results: The best fits for mean of responses were polynomial equations with a R2 of 0.98 and 0.90 (for FDXR and RAD51 dose response curves, respectively). Dose response of the FDXR gene produced a better mean dose estimation of irradiated "validation" samples compared to the RAD51 gene at doses of 1, 2 and 3 Gy. FDXR gene expression separated the irradiated rats from controls with a sensitivity, specificity and accuracy of 87.5%, 83.5% and 81.3%, respectively, 24 hours after dose of 2 Gy. These values were significantly (p<0.05) higher than the 75%, 75% and 75%, respectively, obtained using gene expression of RAD51 analysis at a dose of 2 Gy. Conclusions: Collectively, these data suggest that absolute quantification by gel purified quantitative RT-PCR can be used to measure the mRNA copies for GE biodosimetry studies at comparable accuracy to similar methods. In the case of TBE with 6MV energy, FDXR gene expression analysis is more precise than that with RAD51 for quantitative and qualitative dose assessment.

Planning Aspects of Volumetric Modulated Arc Therapy and Intensity Modulated Radio therapy in Carcinoma Left Breast - A Comparative Study

  • Ekambaram, Varadharajan;Velayudham, Ramasubramanian;Swaminathan, Shiyama;Loganathan, Padmanabhan;Swaminathan, Vijaya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1633-1636
    • /
    • 2015
  • Background: The advantages of Rapid Arc plans versus Intensity modulated radiotherapy plans for Carcinoma left breast were analyzed. Materials and Methods: In this study 20 Post mastectomy carcinoma left breast patients were analyzed. Both Intensity modulated Radiotherapy and Rapid Arc plans were generated for these patients. IMRT plans with 7 beams in an arc fashion and VMAT plans with two semi arcs were made to achieve 95% dose coverage to 100% volume. The plans were evaluated using Dose volume Histograms. Results: The mean Conformity and Homogeneity index in VMAT is found to be 1.05 and 0.065 respectively whereas in IMRT it was 1.07 and 0.069. The 20% volume of Heart received a mean dose of 960cGy in VMAT and 1300cGy in IMRT. The mean dose was 1236cGy in VMAT and 1870cGy in IMRT. The ipsilateral Lung received 3395cGy to 5% volume and 1840cGy to 20% volume on an average and the mean dose was 1205cGy in VMAT, while the same were found to be 3525cGy, 2012cGy and 1435cGy respectively in IMRT. The Contralateral Lung received a mean dose of 505cGy in VMAT and 553cGy in IMRT. The mean Monitor units in VMAT were 512MU and 1170MU in IMRT. The NTID in VMAT is $108.8{\times}10^5Gycm^3$ and $110.1{\times}10^5Gycm^3$ in IMRT. Conclusions: The target coverage, homogeneity and Conformity index were better in VMAT plans. The Ipsilateral Lung and heart dose were very less in VMAT plans. The Contralateral Lung dose and the Normal Tissue Integral Dose were also lesser in VMAT plans however the difference is not very appreciable. The MU in VMAT plans is almost 50% that of the IMRT plans which results in the reduction of treatment time. On the whole VMAT proves to be a better modality for treating Ca. Left Breast Patients.

Measurement and Monte Carlo Simulation evaluation of a Compton Continuum Suppression with low level soil Sample (저준위 토양시료를 이용한 콤프턴 연속체 억제의 측정 및 몬테카롤로 시뮬레이션 평가)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.123-131
    • /
    • 2018
  • This study compared PENELOPE with measured values from low energy peak to high energy peak to reduce peak to compton ratio and continuum background spectrum using $^{60}Co$, $^{137}Cs$ and mixed volume source. In addition, the change in backscattering and compton edge efficiency was compared with that of PENELOPE through changes in the vicinity of low energy. The results from the mixed volume source are applied to the soil samples to determine how much the minimum detection limits of the soil samples are reduced in the suppression and unsuppressed mode. The compton suppression of the low energy region of $^{60}CO$ (1,173 keV) was considerable, and the Compton edge RF for the $^{137}Cs$ (661 keV) peak was 2.8. In particular, the $^{60}Co$ source emits coincidence gamma rays of 1,173.2 keV and 1,332.5 keV, so compton inhibition was reduced by approximately 21%. RF of compton edges of 1,173 keV and 1,332 keV emitted from a $^{60}Co$ source was 3.2 and 3.4, and the peak to compton edge ratio was improved to 8: 1. And Compared with Penelope, the uncertainty was well within 2%. In compton unsuppressed mode, MDA values of 661 keV, 1,173 keV and 1,332 keV were 0.535, 0.173 and 0.136 Bq/kg, respectively, but decreased in compton suppressed mode to 0.121, 0.00826 and 0.00728 Bq/kg. Thus, Compton suppressed could reduce the background radioactivity and the radioactivity contained in the detector itself.

Study of 4π Compton Suppression Spectrometer by Monte Carlo Simulation (몬테카를로 시뮬레이션을 통한 4π 컴프턴 억제 분광기 연구)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.123-129
    • /
    • 2017
  • Compton suppression apparatus using the Compton scattering response, by inhibiting part of the spectrum Compton continuum Compton continuum in the area of the peak analysis of the gamma rays that enables a clearer device. In order to find out the geometry structure of high-purity germanium detector(HPGe) -NaI(TI) and to optimize the effect of movement, Monte Carlo simulation was used to grasp the behavioral characteristics of Compton suppression and compare several layout structures. And applied to the cylinder beaker used for the environmental measurement by using the efficiency according to the distance. For the low-energy source such as 81 keV, the Compton continuum is scarcely developed and the suppression effect is also insignificant because the scattering cross-section of the Compton effect is relatively low. In the spectrum for the remaining energy, it can be seen that the Compton continuum part is suppressed in a certain energy range. Compton suppression effect was not significantly different from positional shift. average reduction factor(ARF) value was about 1.08 for 81 keV and about 1.23 for 1332.4keV energy at the highest value. It can be seen that suppression over the Compton continuum region of the energy spectrum is a more appropriate arrangement. Therefore, it can be applied to various environmental sample measurement through optimized structure.

Effect of 18 Irradiation on Neurotransmitters in the Brains of Goldfish Carassius auratus (18 방사성동위원소 피폭에 의한 금붕어(Carassius auratus)뇌의 신경전달물질 변화)

  • Park, Nam-Gyu;Go, Hye-Jin;Kim, Gun-Do;Lee, Jong-Kyu;Kil, Sang-Hyeong;Lee, Byung-Woo
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1046-1051
    • /
    • 2012
  • In order to investigate the changes in bioactive materials induced in goldfish brains by $^{18}F$ irradiation, the variations in the neurotransmitter levels in the whole brain were studied. The distance between the goldfish and 580 mCi of $^{18}F$ was about 4 cm, and the exposure lasted for 4 hrs. The absorption level calculated based on the distance, exposure time, and half-life of $^{18}F$ was approximately 2 Gy. After sacrifice by $^{18}F$ irradiation or untreated conditions, ten brains were dissected or immediately frozen, respectively. The tissues were extracted in acetic acid. After lyophilization, the samples were dissolved in distilled water and were further purified on a reverse-phase HPLC column. There were no differences in the intensities of the bioactive materials between $^{18}F$-exposed goldfish and control goldfish, while the only peak corresponded to 13 min, which indicated a significant increase in the irradiated brains. Our analysis has found that this compound is tryptophan. This result suggests that $^{18}F$ leads to changes in a classical neurotransmitter, tryptophan, in both the brains of control goldfish and goldfish contaminated by irradiation.

XAS Studies of Ion Irradaited MgO Thin Films

  • Suk, Jae-Kwon;Gautam, Sanjeev;Song, Jin-Ho;Lee, Jae-Yong;Kim, Jae-Yeoul;Kim, Joon-Kon;Song, Jong-Han;Chae, Keun-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.312-312
    • /
    • 2012
  • Magnesium oxide has become focus for research activities due to its use in magnetic tunnel junctions and for understanding of do ferromagnetism. Theoretical investigations on such type of system indicate that the presence of defects greater than a threshold value is responsible for the magnetic behaviour. It has also been shown experimentally that by decreasing the film thickness and size of nanoparticles, enhancement/increase in magnetization can be achieved. Apart from the change in dimension, swift heavy ions (SHI) are well known for creating defects and modifying the properties of the materials. In the present work, we have studied the irradiation induced effects in magnesium oxide thin film deposited on quartz substrate via X-ray absorption spectroscopy (XAS). Magnesium oxide thin films of thickness 50nm were deposited on quartz substrate by using e-beam evaporation method. These films were irradiated by 200 MeV Ag15+ ion beam at fluence of $1{\times}10^{11}$, $5{\times}10^{11}$, $1{\times}10^{12}$, $3{\times}10^{12}$ and $5{\times}10^{12}ions/cm^2$ at Nuclear Science Centre, IUAC, New Delhi (India). The grain size was observed (as studied by AFM) to be decreased from 37 nm (pristine film) to 23 nm ($1{\times}10^{12}ions/cm^2$) and thereafter it increases upto a fluence of $5{\times}10^{12}ions/cm^2$. The electronic structure of the system has been investigated by X-ray absorption spectroscopy (XAS) measurements performed at the high energy spherical grating monochromator 20A1 XAS (HSGM) beamline in the National Synchrotron Radiation Research Center (NSRRC), Taiwan. Oxides of light elements like MgO/ZnO possess many unique physical properties with potentials for novel application in various fields. These irradiated thin films are also studied with different polarization (left and right circularly polarized) of incident x-ray beam at 05B3 EPU- Soft x-ray scattering beamline of NSRRC. The detailed analysis of observed results in the wake of existing theories is discussed.

  • PDF

Evaluation of DNA Damage by Mercury Chloride (II) and Ionizing Radiation in HeLa Cells (이온화 방사선 및 염화수은(II)에 의한 자궁경부암 세포의 DNA 손상 평가)

  • Woo Hyun-Jung;Kim Ji-Hyang;Antonina Cebulska-Wasilewska;Kim Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.46-52
    • /
    • 2006
  • The mercury is among the most highly bioconcentrated toxic trace metals. Many national and international agencies and organisations have targeted mercury for the possible emission control. The mercury toxicity depends on its chemical form, among which alkylmercury compounds are the most toxic. A human cervix uterus cancer cell line HeLa cells was employed to investigate the effect of the toxic heavy metal mercury (Hg) and ionizing radiation. In the in vitro comet assays for the genotoxicity in the HeLa cells, the group of Hg treatment after irradiation showed higher DNA breakage than the other groups. The tail extent moment and olive tail moment of the control group were $4.88{\pm}1.00\;and\;3.50{\pm}0.52$ while the values of the only Hg treatment group were $26.90{\pm}2.67\;and\;13.16{\pm}1.82$, respectively. The tail extent moment and olive tail moment of the only 0.001, 0.005, 0.01 Hg group were $12.24{\pm}1.82,\;8.20{\pm}2.15,\;20.30{\pm}1.30,\;12.26{\pm}0.52,\;40.65{\pm}2.94\;and \;20.38{\pm}1.49$, respectively. In the case of Hg treatment after irradiation, the tail extent moment and olive tail moment of the 0.001, 0.005, 0.01 Hg group were $56.50{\pm}3.93,\;32.69{\pm}2.48,\;62.03{\pm}5.14,\;31.56{\pm}1.97,\;72.73{\pm}3.70\;and \;39.44{\pm}3.23$, respectively. The results showed that Hg induced DNA single-strand breaks or alkali labile sites as assessed by the Comet assay. It is in good agreement with the reported results. The mercury inhibits the repair of DNA. The bacterial formamidopyrimidine-DNA glycosylase (Epg protein) recognizes and removes some oxidative DNA base modifications. Enzyme inactivation by Hg (II) may therefore be due either to interactions with rysteine residues outside the metal binding domain or to very high-affinity binding of Hg (II) which readily removes Zn (II) from the zinc finger.

구분린 완전결정을 이용한 중성자 단색기의 원리

  • ;;;P. Mikula
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.22-22
    • /
    • 2003
  • 원자로에서 핵분열에 의해 생성된 고에너지 중성자는 감속재를 통해 열평형에 의해 에너지가 낮춰져 통계적 분포, 즉 Maxwell-Boltzman 운동에 따른 에너지 스펙트림을 갖게 된다. 중성자 산란장치는 통상 단색빔을 이용하므로 단색기(monochiomator)를 통해 이 분포에서 특정 파장의 중성자빔을 인출, 즉 단색화한다. 이때 단색기는 각각의 중성자 산란장치에 사용할 수 있는 특정 파장의 중성자빔을 인출하면서도, 파장의 퍼짐을 적절하게 조절하여 높은 중성자속(neutron flux)을 가지며 분해능도 또한 좋아야 한다. 전통적으로 많이 사용하는 단색화 방법은 결정의 내부결함을 유도하여 만든 모자익(mosaic) 결정을 이용하는 것이다. 이 방법은 특정 파장을 얻으면서도 좋은 분해능과 높은 중성자속을 갖는 모자익 결정을 만들기가 어렵고, 한번 결정된 단색기의 특성을 바꿀 수 없는 단점이 있다. 1980년대부터 몇몇 그룹이 거의 완전하게 성장된 단결정 슬랩을 미세하게 구부려서 탄성변형을 주어 effective 모자익 구조를 발생시킨 '구부린 완전결정(bent perfect crystal, BPC)' 단색기를 개발하여 특정 목적에 활용하는 시도를 하였다. BPC 단색기는 단색화된 중성자빔을 집속(focusing)할 수 있으며, 결정의 구부림 정도를 조절하고 배치 기하를 바꿈으로써 다양한 특성을 갖는 단색빔을 얻을 수 있는 장점이 있다. 이렇게 단색기의 기하학적 변수를 조절함으로써 회절빔의 집속도와 분해능을 조절할 수 있어서 잔류응력 측정이나 단결정 회절 및 집합조직 측정장치 등에 적용할 수 있다. 본 연구에서는 BPC 단색기의 원리와 여러 배치기하에 따른 빔의 특성을 소개하고자 한다.빔이 시료와 상호 작용하는 면적과 상호작용하지 않을 때의 빔을 회절모드에서 faraday cup으로 측정한 빔전류로 부터 계산하였다. Gibbsite에 대한 전자빔 조사 시 1분 이내에 급격한 Hydroxyl Ion(OH-)의 이탈로 인해 Cibbsite의 구조는 거시적 비정질화가 되며 시간증가에 따라 χ-alumina → ν-alumina → σ-alumina or δ-alumina의 순으로 상전이를 겪는다. 전자빔 조사 시 관찰된 회절자료의 가시적 변화를 통해 illumination angle 1.25mrad(Dose rate : 334 × 10³ e/sup -//sec·n㎡)일 경우 약 3초 이내에 비정질화가 시작됨을 알 수 있었고 이는 약 1 × 10/sup 6/ e/sup -//sec·n㎡ 의 전자선량에 해당되며 이를 기준으로 각각의 illumination angle에 대한 임계전자선량을 평가할 수 있었다. 실질적으로 Cibbsite와 같은 무기수화물의 직접가열실험 시 전자빔 조사에 의해 야기되는 상전이 영향을 배제하고 실험을 수행하려면 illumination angle 0.2mrad (Dose rate : 8000 e/sup -//sec·n㎡)이하로 관찰하고 기록되어야 함을 본 자료로부터 알 수 있었다.운동횟수에 의한 영향으로써 운동시간을 1일 6시간으로 설정하여, 운동횟수를 결정하기 위하여 오전, 오후에 각 3시간씩 운동시키는 방법과 오전부터 6시간동안 운동시키는 두 방법을 이용하여 품질을 비교하였다. 각 조건에 따라 운동시킨 참돔의 수분함량을 나타낸 것으로, 2회(오전 3시간, 오후 3시간)에 나누어서 운동시키기 위한 육의 수분함량은 73.37±2.02%를 나타냈으며, 1회(6시간 운

  • PDF