DOI QR코드

DOI QR Code

Measurement and Monte Carlo Simulation evaluation of a Compton Continuum Suppression with low level soil Sample

저준위 토양시료를 이용한 콤프턴 연속체 억제의 측정 및 몬테카롤로 시뮬레이션 평가

  • Jang, Eun-Sung (Department of Nuclear Physics and Radiation Technology Research Center, Pusan National University) ;
  • Lee, Hyo-Yeong (Department of Radiological Science, Dongeui University)
  • 장은성 (부산대학교 핵물리방사선연구소) ;
  • 이효영 (동의대학교 방사선학과)
  • Received : 2017.11.20
  • Accepted : 2018.04.30
  • Published : 2018.04.30

Abstract

This study compared PENELOPE with measured values from low energy peak to high energy peak to reduce peak to compton ratio and continuum background spectrum using $^{60}Co$, $^{137}Cs$ and mixed volume source. In addition, the change in backscattering and compton edge efficiency was compared with that of PENELOPE through changes in the vicinity of low energy. The results from the mixed volume source are applied to the soil samples to determine how much the minimum detection limits of the soil samples are reduced in the suppression and unsuppressed mode. The compton suppression of the low energy region of $^{60}CO$ (1,173 keV) was considerable, and the Compton edge RF for the $^{137}Cs$ (661 keV) peak was 2.8. In particular, the $^{60}Co$ source emits coincidence gamma rays of 1,173.2 keV and 1,332.5 keV, so compton inhibition was reduced by approximately 21%. RF of compton edges of 1,173 keV and 1,332 keV emitted from a $^{60}Co$ source was 3.2 and 3.4, and the peak to compton edge ratio was improved to 8: 1. And Compared with Penelope, the uncertainty was well within 2%. In compton unsuppressed mode, MDA values of 661 keV, 1,173 keV and 1,332 keV were 0.535, 0.173 and 0.136 Bq/kg, respectively, but decreased in compton suppressed mode to 0.121, 0.00826 and 0.00728 Bq/kg. Thus, Compton suppressed could reduce the background radioactivity and the radioactivity contained in the detector itself.

본 연구는 점 선원인 $^{60}Co$, $^{137}Cs$ 및 혼합부피선원을 이용하여 피크 대 컴프턴 비율, 연속체 배경 스펙트럼을 감소시키기 위해 저 에너지 peak부터 고 에너지 peak에서 측정된 측정치와 PENELOPE와 비교하였다. 또한, 저에너지 부근에서의 변화를 통해 후방산란, 컴프턴 단(compton edge)의 효율 변화를 PENELOPE와 비교하였다. 혼합부피 선원에서 나온 결과를 토양시료에 적용하여 억제와 비 억제(unsuppressed)모드에서 토양시료의 최소검출한계치가 얼마큼 감소하였는지 확인하고자 한다. $^{60}CO$(1,173 keV)의 저에너지 영역의 컴프턴 억제가 상당히 되었으며, $^{137}Cs$(661 keV) 피크에 대한 Compton edge의 RF는 2.8이다. 특히, $^{60}Co$ 선원은 1,173.2keV와 1,332.5 keV의 coincidence 감마선을 방출하므로 컴프턴 억제는 대략 21% 감소하였다. 60Co 선원에서 방출되는 1,173keV와 1,332keV의 compton edge의 RF는 3.2, 3.4였으며 피크대 컴프턴 edge비율은 8:1로 향상되었다. 그리고, PENELOPE와 비교했을 때 불확도는 2% 이내로 잘 일치하였다. Compton unsuppressed 모드에서 661 keV, 1,173 keV 및 1,332 keV의 MDA 값은 각각 0.535, 0.173 및 0.136Bq/kg이었으나, Compton suppressed 모드에서는 0.121, 0.00826 및 0.00728B/kg로 감소하였다. 따라서, Compton suppres sed는 배후방사능과 검출기 자체에 함유된 방사능을 줄일 수 있었다.

Keywords

References

  1. K. Fukuda, J. Ohkuma, T. Asano and Y. Satoh, Performance of a Ge-BGO Compton-suppression spectrometer and its application to photon activation analysis, Nuclear Instrument and Method B, Vol. 114, pp. 379, 1996. https://doi.org/10.1016/0168-583X(96)00206-6
  2. M, Moxzynski, J. H. Bjerregard, B. Herskind, P. Knudsen, Limitation of the Compton suppression in Ge-BGO Compton suppression spectrometers. Nuclear Instrument and Physics Research Section. Vol. 280, pp. 73-82, 1989. https://doi.org/10.1016/0168-9002(89)91273-4
  3. R. Alba, G. Bellia and A. Del Zoppo, "Performance of a symmetric BGO-NaI anti-compton shield", Nucl. Instrum. And Meth., Vol. A 271, pp. 553-556, 1988.
  4. Yuhao Mi, Hao Ma, Zhi Zeng, Jianping Cheng, Hui Compton suppression in BEGe detectors by digital pulse shape analysis. 2017.
  5. Chien Chung, C. J Lee, Environmental monitoring using a HPGe-NaI(Tl) Compton suppression spectrometer. Nucl.Instrum. Methods Phys. A. 273, pp. 436-440. 1988. https://doi.org/10.1016/0168-9002(88)90847-9
  6. JW. Scates, J. Hartwell, R. Aryaeinejad, M. Mcllwain, 2006. Optimization stydies of a Compton suppression spectrometer using experimentally validated Monte Carlo simulations, Nucl. Instrum. Methods Phys.Res.Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 556(2), 498-504. 2016
  7. Y. Choi, K.B Lee, K.J. Kim, J, Han, E.S. Yi, Development of an optimized Compton suppression gamma-ray spectrometric system using Monte Carlo simulation, Applied Radiation and Isotopes, Vol. 109, pp. 558-562. 2016. https://doi.org/10.1016/j.apradiso.2015.12.058
  8. O. Sima, I. Osvath, Calibration of a low-level anti-Compton underground gamma-spectrometer by experiment and Monte Carlo. Appl. Radiat.Isot. 81. pp. 109-113. 2013. https://doi.org/10.1016/j.apradiso.2013.03.025
  9. A.T. Farsoni, B. Alemayehu, A Alhawsawi, E. M. Becker , Farsoni et al., Compton suppressed phoswitch detector for gamma spectroscopy, 2013.
  10. Grigorescu EL, De Felice P, Eazdolescu AC, Low-level gamma spectrometry using bata coincidence and Compton suppression Appl Radiat isot. 61, pp. 191-5, 2004. https://doi.org/10.1016/j.apradiso.2004.03.044
  11. W. Sahl, D. Degering, C. Lierse and X. Li, "Enhancement of Compton suppression ratios in anti-Compton techniques: the Garching and Karlsruhe photon spectrometers", Nucl. Instrum. And Meth., Vol. A369, pp. 627-633, 1996.
  12. Light transport contribution to the timing characteristics of scintillation detectors Radiat. Phys. Chem. 80, pp. 365-368. 2011 https://doi.org/10.1016/j.radphyschem.2010.11.005
  13. HPGe Detectors for Compton Suppression Counting Systems. Ortec
  14. G. J Schmid, J. J Blair, J. E Kammeraad, HPGe Compton suppression using pulse shape analysis, Researchgate, 1999.
  15. A. McNamara, H. Heijnis, D. Fierro, M. Reinhard, The determination of the efficiency of a Compton suppressed HPGe detector using Monte Carlo simulations. J. Environ. Radioact. 106, 1-7. 2012. https://doi.org/10.1016/j.jenvrad.2011.10.017
  16. N. Ghal-Eh, A Compton suppression detection system for use in manganese bath measurements Radiation physicis and Chemistry 112 ; 34-39. 2015. https://doi.org/10.1016/j.radphyschem.2015.03.003
  17. Yamada T, Ishizu H, Kawada Y, A simple methodfor activity determination of 134Cs and 137Cs in foodstuffs using Nai(TI) scintillation spectrometer. Appl Radiat isot. Nov, 81:353-355. 2013. https://doi.org/10.1016/j.apradiso.2013.03.048
  18. Low-level gamma spectrometry using bata coincidence and Compton suppression Appl Radiat isot. 61. 191-195. 2004. https://doi.org/10.1016/j.apradiso.2004.03.044
  19. Kenichiro Yasuda, Masahlto Mori, Yutaka Miyamoto, Masaski Magara Low energy gamma- and X-ray measurements by means of Compton suppression technique for safeguards environmental samples Journal of Nuclear science and Technology, Vol. 39, pp. 576-578, 2002.