• 제목/요약/키워드: nuclear operator

검색결과 268건 처리시간 0.024초

Method for Inference of Operators' Thoughts from Eye Movement Data in Nuclear Power Plants

  • Ha, Jun Su;Byon, Young-Ji;Baek, Joonsang;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.129-143
    • /
    • 2016
  • Sometimes, we need or try to figure out somebody's thoughts from his or her behaviors such as eye movement, facial expression, gestures, and motions. In safety-critical and complex systems such as nuclear power plants, the inference of operators' thoughts (understanding or diagnosis of a current situation) might provide a lot of opportunities for useful applications, such as development of an improved operator training program, a new type of operator support system, and human performance measures for human factor validation. In this experimental study, a novel method for inference of an operator's thoughts from his or her eye movement data is proposed and evaluated with a nuclear power plant simulator. In the experiments, about 80% of operators' thoughts can be inferred correctly using the proposed method.

REMARK ON A SEGAL-LANGEVIN TYPE STOCHASTIC DIFFERENTIAL EQUATION ON INVARIANT NUCLEAR SPACE OF A Γ-OPERATOR

  • Chae, Hong Chul
    • Korean Journal of Mathematics
    • /
    • 제8권2호
    • /
    • pp.163-172
    • /
    • 2000
  • Let $\mathcal{S}^{\prime}(\mathbb{R})$ be the dual of the Schwartz spaces $\mathcal{S}(\mathbb{R})$), A be a self-adjoint operator in $L^2(\mathbb{R})$ and ${\Gamma}(A)^*$ be the adjoint operator of ${\Gamma}(A)$ which is the second quantization operator of A. It is proven that under a suitable condition on A there exists a nuclear subspace $\mathcal{S}$ of a fundamental space $\mathcal{S}_A$ of Hida's type on $\mathcal{S}^{\prime}(\mathbb{R})$) such that ${\Gamma}(A)\mathcal{S}{\subset}\mathcal{S}$ and $e^{-t{\Gamma}(A)}\mathcal{S}{\subset}\mathcal{S}$, which enables us to show that a stochastic differential equation: $$dX(t)=dW(t)-{\Gamma}(A)^*X(t)dt$$, arising from the central limit theorem for spatially extended neurons has an unique solution on the dual space $\mathcal{S}^{\prime}$ of $\mathcal{S}$.

  • PDF

Evaluation of an Alarm System Using Signal Detection Theory(SDT)

  • Park, Jin-Kyun;Hong, Jin-Hyuk;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.197-202
    • /
    • 1995
  • When the process disturbance of nuclear power plant occurred, the operator should ensure plant safety, economy and identify the causes of disturbance. To accomplish these goals, operator should process a large amounts of information. Among these, alarms would be often in the operator's first indication of a plant state change or disturbance. To support limited information processing capability of operator, considerable works are under way to develop advanced alarm processing systems and to evaluate it. However, conventional evaluation method could provide just evaluation results but the design alternatives to enhance alarm system performance. To overcome problems associated with conventional evaluation methods of alarm system, signal detection theory(SDT) was introduced, and it was possible conclude that SDT could not only evaluate system but also suggest design alternatives for performance enhancement.

  • PDF

A Systems Engineering Approach for CEDM Digital Twin to Support Operator Actions

  • Mousa, Mostafa Mohammed;Jung, Jae Cheon
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.16-26
    • /
    • 2020
  • Improving operator performance in complex and time-critical situations is critical to maintain plant safety and operability. These situations require quick detection, diagnosis, and mitigation actions to recover from the root cause of failure. One of the key challenges for operators in nuclear power plants is information management and following the control procedures and instructions. Nowadays Digital Twin technology can be used for analyzing and fast detection of failures and transient situations with the recommender system to provide the operator or maintenance engineer with recommended action to be carried out. Systems engineering approach (SE) is used in developing a digital twin for the CEDM system to support operator actions when there is a misalignment in the control element assembly group. Systems engineering is introduced for identifying the requirements, operational concept, and associated verification and validation steps required in the development process. The system developed by using a machine learning algorithm with a text mining technique to extract the required actions from limiting conditions for operations (LCO) or procedures that represent certain tasks.

A reliable intelligent diagnostic assistant for nuclear power plants using explainable artificial intelligence of GRU-AE, LightGBM and SHAP

  • Park, Ji Hun;Jo, Hye Seon;Lee, Sang Hyun;Oh, Sang Won;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1271-1287
    • /
    • 2022
  • When abnormal operating conditions occur in nuclear power plants, operators must identify the occurrence cause and implement the necessary mitigation measures. Accordingly, the operator must rapidly and accurately analyze the symptom requirements of more than 200 abnormal scenarios from the trends of many variables to perform diagnostic tasks and implement mitigation actions rapidly. However, the probability of human error increases owing to the characteristics of the diagnostic tasks performed by the operator. Researches regarding diagnostic tasks based on Artificial Intelligence (AI) have been conducted recently to reduce the likelihood of human errors; however, reliability issues due to the black box characteristics of AI have been pointed out. Hence, the application of eXplainable Artificial Intelligence (XAI), which can provide AI diagnostic evidence for operators, is considered. In conclusion, the XAI to solve the reliability problem of AI is included in the AI-based diagnostic algorithm. A reliable intelligent diagnostic assistant based on a merged diagnostic algorithm, in the form of an operator support system, is developed, and includes an interface to efficiently inform operators.

Human resource development and needs analysis for nuclear power plant deployment in Nigeria

  • Egieya, Jafaru M.;Ayo-Imoru, Ronke M.;Ewim, Daniel R.E.;Agedah, Ebisomu C.
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.749-763
    • /
    • 2022
  • The fulcrum of economic development is a sustainable supply of electricity. Nigeria is plagued with blackouts, with one of the lowest per capita electricity consumption in the world (circa. 120 kWh per capita). Hence, policies have been instigated to integrate electricity generation from nuclear power plants (NPP) on or before 2027. However, a critical requirement for NPP generation is the implementation of robust human resource development (HRD) programs. This paper presents the perspective of Nigeria in assessing human resources needs over the entire NPP lifecycle following the milestone approach and employing the IAEA's Nuclear Power Human Resource (NPHR) modeling tool. Three workforce organizations are in focus including the owner/operator, regulators, and construction workers following three decades timeframe (2015-2045). The results indicate that for the study period, a maximum of approximately 9045 personnel (73% construction workers, 24% owner/operator, and 3% regulators) should be directly involved in the NPP program just before the commissioning of the third NPP in 2033. However, this number decreases by about 73% (2465 personnel including 94% operator and 6% regulator) at the end of the study timeframe. The results can potentially provide clarity and guidance in HRD decision-making programs.

THE MODEL PREDICTIVE CONTROLLER FOR THE FEEDWATER AND LEVEL CONTROL OF A NUCLEAR STEAM GENERATOR

  • Lee, Yoon Joon;Oh, Seung Jin;Chun, Wongee;Kim, Nam Jin
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.911-918
    • /
    • 2012
  • Steam generator level control at low power is difficult due to its adverse thermal hydraulic properties, and is usually conducted by an operator. The basic model predictive control (MPC) is similar to the action of an operator in that the operator knows the desired reference trajectory for a finite period of time and takes the necessary control actions needed to ensure the desired trajectory. An MPC is based on a model; the performance as well as the efficiency of the MPC depends heavily on the exactness of the model. In this study, steam generator models that can describe in detail its thermal hydraulic behaviors, particularly at low power, are used in the MPC design. The design scope is divided into two parts. First, the MPC feedwater controller of the feedwater station is determined, and then the MPC level controller for the overall system is designed. Because the dynamic properties of a steam generator change with the power levels, a realistic situation is simulated by changing the transfer functions of the steam generator at every time step. The resulting MPC controller shows good performance.

원자력 규제정책에 대한 국민신뢰도 평가 SD모델 연구 (System Dynamic Model Study of Public Trust on Nuclear Regulation Policy)

  • 곽미애;차현주;김성현;정관용
    • 한국시스템다이내믹스연구
    • /
    • 제16권1호
    • /
    • pp.53-74
    • /
    • 2015
  • The purpose of this paper is to simulate public trust on nuclear regulation policy. The first of all, public trust variables and the model were developed and analysed by system dynamic method. The model are consisted of the operator safety culture level, regulatory competence levels, the public satisfaction and public trust level. The scenario is made up three type which base scenario, the system operator's safety culture level and accident event level. First. the simulation results of standard scenario shows that rapidly declining public satisfaction and trust level of the national safety after Japan's nuclear accident in November 2011. Second, operator safety culture level and simulated divided into three levels. The results showed that a greater impact on the public satisfaction if bad than good case. Finally, the size of the accident was simulated divided into three levels levels(no accident, medium, serious accidents). the results showed a weak effect against the regulatory capacity and safety performance levels but showed a significant impact on public satisfaction and confidence level.